
AB HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Engineering Physics and Mathematics

Ilkka Kudjoi

Applying the Gittins Index to Scheduling
of a Queueing System

Master's thesis submitted in partial ful�llment of the requirements
for the degree of Master of Science in Technology

Espoo, 28th November 2007

Supervisor: Professor Esko Valkeila
Instructor: Ph.D. Samuli Aalto



AB HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Engineering Physics and Mathematics

ABSTRACT OF MASTER'S THESIS

Author: Ilkka Kudjoi

Department: Department of Engineering Physics and Mathematics

Major subject: Mathematics

Minor subject: Computer and Information science

Title: Applying the Gittins Index to Scheduling
of a Queueing System

Title in �nnish: Gittinsin indeksin soveltaminen jonosysteemin skedulointiin

Chair: Mat-1 Mathematics

Supervisor: Professor Esko Valkeila

Instructor: Ph.D. Samuli Aalto

Abstract: Multi-armed bandit is a known machine learning problem, in which there are
n machines, which yield a random reward once they are allocated one at a time. The
question assigned to the system is, how to �nd an optimal allocation order for the bandits,
so that the system would produce best possible reward stream.

Gittins index is recognised as a powerful solution of the problem, but it is not that widely
known that the index can be also used to schedule queueing systems. There exists various
publications on the topic, but the common factor for most of them is that they are not too
easy to follow, especially the original proof by the father of the Gittins index, J.C. Gittins,
is challenging.

The motivation of this thesis is therefore to study the relevant publications and to assemble
a summarising work on this topic that would be easier to follow. This is achieved by
providing introduction to the relevant basic theory related to the topic and to the Gittins
index. Further the focus is placed on the generalisation of the index for scheduling of a
one server queueing system by simplifying and picking up the most relevant parts of the
proof by Gittins to this thesis.

In practise the thesis shows that the Gittins index minimises the expected weighted �ow-
time (EWFT) of an M/G/1-queueing system, but there is no question about whether or
not the index couldn't be generalised further to make also other types of schedulers more
e�ective. However, the further generalisations is to be covered by further research.

Pages: 81+vi Keywords: Gittins index, queueing systems,
Markov decision processes, multi-armed bandit, scheduling

Department �lls

Approved: Library code:

ii



AB TEKNILLINEN KORKEAKOULU
Teknillisen fysiikan ja matematiikan osasto

DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Ilkka Kudjoi

Osasto: Teknillisen fysiikan ja matematiikan osasto

Pääaine: Matematiikka

Sivuaine: Informaatiotekniikka

Työn nimi: Gittinsin indeksin soveltaminen jonosysteemin skedulointiin

Title in English: Applying the Gittins Index to Scheduling
of a Queueing System

Professuurin koodi ja nimi: Mat-1 Matematiikka

Työn valvoja: Professori Esko Valkeila

Työn ohjaaja: FT Samuli Aalto

Tiivistelmä: Monikätinen rosvo on tunnettu koneoppimisen ongelma, joka koostuu n:stä
koneesta, jotka tuottavat satunnaisen tuoton, kun niitä käytetään yksi kerrallaan. Systee-
miin liitetty ongelma on, missä järjestyksessä ja miten koneita tulisi käyttää, jotta niistä
saataisiin mahdollisimman hyvä tuottovirta.

Gittinsin indeksi on osoittautunut tehokkaaksi ratkaisuksi monikätisen rosvon ongelmaan,
mutta ei ole niinkään yleisesti tunnettua, että indeksiä voidaan käyttää myös jonosys-
teemien skedulointiin. Aiheeseen liittyen on tehty useita eri julkaisuja, mutta useimmille
niistä julkaisuista yhteinen tekijä on niiden kehno seurattavuus. Erityisesti J.C. Gittinsin
alkuperäisen todistuksen seuraaminen on haastavaa.

Sen tähden tämän diplomityön tavoitteena onkin tutkia aiheeseen liittyviä julkaisuja ja
nivoa niistä yhteen kirjallinen tutkielma, jota olisi lähteitä helpompi seurata. Tavoite saa-
vutetaan työssä tarjoamalla ensin lukijalle johdanto aiheeseen liittyvään perusteoriaan ja
Gittinsin indeksiin, kun taas myöhemmin työssä keskitytään Gittinsin indeksin yleistyk-
seen yhden palvelijan jonosysteemeille selventäen ja poimien oleellisimpia asioita Gittinsin
omasta todistuksesta.

Tämä diplomityö siis osoittaa, että Gittinsin indeksi todella minimoi saapuvien töiden
painotetun viiveen odotusarvon yhden palvelijan M/G/1-jonosysteemissä, mutta on sel-
vää, että indeksiä voitaisiin yleistää edelleen muihinkin jonosysteemeihin, tehden niiden
skeduloinnista tehokkaampaa. Tämä osuus jää kuitenkin jatkotutkimuksen varaan.

Sivumäärä: 81+vi Avainsanat: Gittinsin indeksi, jonojärjestelmät,
markoviset päätösprosessit, monikätiset rosvot, skedulointi

Täytetään osastolla

Hyväksytty: Kirjasto:

iii



Acknowledgements

I wrote this mathematics Master's thesis as a full-time research assistant in the Net-
working laboratory at the Helsinki University of Technology under kind, professional
and advisory instruction of Ph.D. Samuli Aalto. My assignment started in March
2007 and the work was �nalised by the end of the year.

Besides the instructor Samuli Aalto I owe much to my supervisor, professor Esko
Valkeila of the Institute of Mathematics for his kind and �exible supervision and my
boss Jorma Virtamo, who has given me lots of valuable and experienced advice.

In addition I would like to thank my colleagues for their friendliness and support,
especially Ph.D. Aleksi Penttinen for sharing his workroom, his support and good
sense of humour that made the working hours more enjoyable.

This work was funded by project Fancy � Flow-Aware Networking: Applications and
Analysis by the Finnish Academy of which I am most thankful.

Finally, I naturally would like to thank my family and friends for their support and
pleasant leisure time that helped me to relax and keep my mind o� the writing
process outside the working hours.

Espoo, 28th November 2007

Ilkka Kudjoi

iv



Contents

Acknowledgements iv

1 Introduction 1

2 Markov decision processes 3

2.1 The structure of a Markov decision process . . . . . . . . . . . . . . 3

2.2 Multi-armed bandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Value of a MDP and Howard equation . . . . . . . . . . . . . . . . . 6

2.4 Dynamic programming equation . . . . . . . . . . . . . . . . . . . . . 8

2.5 Policy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Discounted policy iteration . . . . . . . . . . . . . . . . . . . 9

2.5.2 Policy iteration with average reward . . . . . . . . . . . . . . 9

2.6 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Discounted value iteration . . . . . . . . . . . . . . . . . . . . 11

2.6.2 Value iteration with average reward . . . . . . . . . . . . . . 12

2.7 Greedy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Index policy on bandit systems . . . . . . . . . . . . . . . . . . . . . 13

3 The Gittins index for Markov bandit processes 14

3.1 Whittle's de�nition of the Gittins index . . . . . . . . . . . . . . . . 14

3.2 Properties of the index and φ(x,M) . . . . . . . . . . . . . . . . . . 15

3.3 Solving φ-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 The optimality of the Gittins index . . . . . . . . . . . . . . . . . . . 17

3.4.1 Simple evaluation of the value function . . . . . . . . . . . . . 18

4 The Gittins index for semi-Markov bandit processes 21

4.1 Families of bandit processes . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Freezing and stopping rules . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Truncated processes and promotion rules . . . . . . . . . . . . . . . . 23

4.4 Gittins' de�nition of the index . . . . . . . . . . . . . . . . . . . . . . 24

v



CONTENTS vi

4.5 Comparison of promotion rules . . . . . . . . . . . . . . . . . . . . . 26

4.6 Interchange argument for bandits . . . . . . . . . . . . . . . . . . . . 27

4.7 The index theorem for families of alternative bandit processes . . . . 27

4.7.1 Forwards induction policy . . . . . . . . . . . . . . . . . . . . 27

4.7.2 Optimal policies . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7.3 Optimality of the index policy . . . . . . . . . . . . . . . . . . 30

5 Scheduling an M/G/1-queue with the Gittins index 35

5.1 Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 The Gittins index for a job . . . . . . . . . . . . . . . . . . . 36

5.2 The index as a scheduling rule for a queueing system . . . . . . . . . 37

5.3 Generalisations of the index policy for a SFABP . . . . . . . . . . . . 38

5.3.1 Bandit superprocesses and families of superprocesses . . . . . 38

5.3.2 Precedence constraints . . . . . . . . . . . . . . . . . . . . . . 42

5.3.3 Arborescent precedence constraints . . . . . . . . . . . . . . . 45

5.3.4 Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.5 Equality of the sub-family indices and the indices . . . . . . . 50

6 Experimental comparison of di�erent policies in a MAB system 53

6.1 Discounted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Average reward models . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusions and further work 61

A Queueing systems 62

A.1 The standard notation of a queueing system . . . . . . . . . . . . . . 62

A.2 Arrival and service processes . . . . . . . . . . . . . . . . . . . . . . . 63

A.3 M/M/1-queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.4 M/G/1-queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.5 Queueing disciplines . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.6 Little's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Mathematica source 66

B.1 initialise.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2 helper.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.3 gittinscontinuous.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.4 policyiteration.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.5 valueiteration.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Introduction

The decision whether or not to play a slot machine, a simple machine that allows
one to play a game that yields a random reward against a small payment, is simple.
The gambler has only two alternatives: To play or not to play, as the gambler
has no further means of in�uencing the playing process. In the real world the slot
machines often return less than 100% of the money that is inserted in the machine,
and thus they may well leave the gambler penniless. Therefore slot machines are
often regarded as one-armed bandits.

The question whether or not to gamble with a slot machine isn't very interesting, but
if there are n machines, whose characteristics are unknown, the problem becomes
more intriguing. The usual setting includes also the assumption that only one bandit
is gambled at a time, so the problem is to �nd the best gambling schedule of n one-
armed bandits to maximise the pay-o� of the bandits. This system of slot machines
is regarded as the multi-armed bandit (MAB) [19, 14, 6].

The multi-armed bandit problem was recognised widely after the Second World War
and was for a relatively long time a di�cult task to solve [6, p. ix]. Gittins proposed
an index solution as early as in late sixties [6, p. ix], but his solution achieved
recognition and popularity �rst over a decade later. The Gittins indices are evaluated
for every bandit process and the scheduling rule is inferred from the index values by
allocating always the bandit having the highest index value.

The index solution is astonishingly simple when compared to the traditional ap-
proaches, since the index values are evaluated by means of one single bandit at a
time and the index of a bandit is essentially the expected constant reward rate of
the bandit, i.e. the rate of reward that a equivalently attractive dummy bandit
producing constant reward would produce.

Surprisingly, the Gittins index can be applied to many other problems similar to the
multi-armed bandit system. In this work special attention is paid on scheduling a
one-server queueing system with the Gittins index. The queueing system of interest
is a so called M/G/1-queue, a queueing system that has one server which handles
the customers or jobs that are arriving in the system according to a Poisson process.
The distribution of the service times is general.

1



1. Introduction 2

The number of bandits in a MAB system is �xed, but the number of jobs in a M/G/1-
queue varies through time. Nevertheless, they are naturally jobs that are identi�ed
as bandits, when the index is applied to the queueing system, but this identi�cation
cannot be done at once, because the queueing system is more complex than a multi-
armed bandit. The index theorem has to be generalised to handle systems that have
arrivals and precedence constraints. The main motivation of this Master's Thesis is
to make this generalisation understandable for a reader who isn't too familiar with
the topic.

Besides on concentrating the understandability of the index this thesis was further
aimed to show that the Gittins index indeed is an e�ective way to generate policies for
multi-armed bandit systems and M/G/1-queueing systems. This thesis also includes
an experimental part that compares the Gittins index to the traditional, iterative
methods of creating optimal policies for MAB systems.

This work is structured into seven chapters. The introduction outlines the thesis
and acts as chapter one, and it is followed by a chapter that introduces the reader
to Markov decision processes. The Gittins index on bandit systems is divided into
two chapters, of which the third chapter handles traditional Markov bandit processes
and the fourth chapter observes the semi-Markov bandit processes. The de�nitions
of the index provided by these chapters are essentially di�erent, and the previous
one does not adapt the original arrangement by Gittins himself directly � the index
for Markov bandit processes obeys the de�nition of Peter Whittle. Nevertheless the
indices de�ned by both authors are equal whenever they apply.

The �fth chapter concentrates on the generalisations of the index theorem, aiming
at making the index applicable on a one-server queueing system. In addition the
chapter concludes the theoretical part of this work, which is followed by a short
experimental chapter number six. The sixth chapter illustrates the di�erences of
the Gittins index and traditional approaches by a simple MAB problem. The work
is closed in chapter seven with conclusions and discussion about further work that
would be interesting to study in this topic.



Chapter 2

Markov decision processes

This section introduces the Markov decision processes in general, what kind of pro-
cesses they are, what is the value of a Markov decision process, and various methods
to determine the value of the processes. In addition multi-armed bandit systems and
their index policies are discussed shortly.

2.1 The structure of a Markov decision process

A Markov decision process (MDP) [4, 11] is a probabilistic model of a system that
changes state as time progresses, according to a decision process. The considered de-
cision process is called D and it is observed at discrete time points ti (i = 0, 1, 2, . . .)
that are usually called stages or decision times. When speaking of an ordinary
Markov decision process, the time points are also equally spaced, commonly ti =
i ∈ N ∪ {0}. At each decision time ti the state of the process is denoted by x(ti),
and it is assumed that x(ti) is a random variable that can take values from the �-
nite set Θ = {1, 2, . . . , N} which is called the state space. Furthermore the notation
{x(ti) = x} corresponds with the event �the process is in state x at time ti�.

The decision process is in most cases maintained by a so-called controller, who
chooses an action a ∈ A(x) = {1, 2, . . . ,m(x)} at time t if the process is in state
x at that time. The action may be regarded as a realisation of a random variable
At denoting the controller's choice at time t. In addition it is assumed that every
controller's choice results in an immediate reward r(x, a) followed by a probabilistic
transition to a new state x′ ∈ Θ. If the decision process obeys condition

p(x′|x, a) := P{x(ti+1) = x′|x(ti) = x,Ati = a} ∀ ti (i = 1, 2, . . .),

that is, the transition probabilities are stationary, or equivalently time-independent,
and they do not depend on the history but only on the current state x then the
process is called Stationary Markov decision process.

The example below this paragraph introduces a basic Markov Decision Process. The
example is very similar to Example 2.1.1. in [4].

Example 1 (Markov decision process). Let Θ = {1, 2, 3, 4}, A(1) = A(2) = A(3) =
A(4) = {1, 2, 3}. Since the amount of states and actions is limited, the data of

3



2.1. The structure of a Markov decision process 4

the problem can be represented conveniently in a format, in which each state of
the process is illustrated with a rectangle (Fig. 2.1). In this representation a box

Figure 2.1: An illustration of a Markov decision process

(0.0,0.0,0.0,1.0) (0.0,0.4,0.5,0.1) (0.7,0.1,0.2,0.0) (0.1,0.1,0.5,0.3)

(0.75,0.15,0.0,0.1) (0.35,0.1,0.35,0.2) (0.0,0.1,0.25,0.65) (0.05,0.15,0.15,0.65)

(0.05,0.0,0.0,0.95) (0.2,0.2,0.6,0.0) (0.1,0.3,0.3,0.3) (0.0,0.0,0.1,0.9)

7

7

6

4

3

3 4 5

3

2

1

1

State 1 State 2 State 3 State 4

P3

P2

P1

with a diagonal divider portrays an action in a state and its reward with transition
probabilities. For instance, above r(1, 1) = 7 and transition probabilities p(1|1, 1) =
0.0 and p(1|2, 2) = 0.35. The question that arises from this example is, how one can
achieve the best possible total reward? In this case, as often is, it is all but clear,
because the states that yield greater rewards are not persistent, transitions away
from the �good� states occur frequently. Although projects 1 and 3 have maximum
reward of 7, it actually appears that project 2 has the best average reward.

It is possible to assign a strategy or equivalently a policy to the Markov decision
processes. In the book of Filar and Vrieze [4] they are referred as strategies and
represented as vectors, that are assigned to the states

α(x) = {α(x, 1), α(x, 2), . . . , α(x,m(x))},

where α(x, a) represents the probability that the controller chooses action a when
the process is in state x. Because the quantities are probability values, they must
satisfy condition

m(x)∑
a=1

α(x, a) = 1.

In this work mainly policies that are deterministic are considered. A policy is de-
terministic if α(x, a) ∈ {0, 1} for all a ∈ A(x). That is, the controller selects some
particular action ax in state x with probability 1, whenever this state is visited. The
de�nition includes also implicitly stationarity, because there is no dependency upon
time t, and the decision are also memoryless or Markov, i.e. the decision depends
only on the current state x. Such policies are determined stationary Markov policies.
When such a policy is applied to a Markov decision process, the process becomes
fully Markovian. Because the decisions are fully deterministic, there transitions of



2.2. Multi-armed bandit 5

the process are fully probabilistic. Actually the process is not any decision process
any more, but a Markov process.

The state transition probabilities with a valid policy de�ne a transition probability
matrix, which is equivalently called a stochastic matrix, when speaking of Markov
chains,

P(α) = (p(x′|x, α))Nx,x′=1,

with entries given by

p(x′|x, α) =
m(x)∑
a=1

p(x′|x, a)α(x, a).

An example policy in Example 1 would be a policy that always chooses action, or
project 2. The corresponding transition probability matrix is


0.75 0.15 0.0 0.1
0.35 0.1 0.35 0.2
0.0 0.1 0.25 0.65
0.05 0.15 0.15 0.65


 .

A special case of interest among Markov decision processes, when considering this
work, is a Multi-armed bandit, which will be introduced and discussed in the next
section. Note that in following sections the dependency upon a policy is denoted
simply with a single letter, which is in most cases α. The set of all policies is
denoted with A.
Occasionally the P-matrix de�nes not one but at least two systems of linear equa-
tions. This event is a feature of the Markov Decision Process, as the process might
not always end up on the same �nal states called recurrent class. This type of Markov
Decision Process is called multichain [11, �8.3.1]. If there exists only one recurrent
class, the type of the MDP is unichain.

2.2 Multi-armed bandit

Multi-armed bandit (MAB) [19, 14, 6] is a machine learning problem, a special type
of a Markov decision process and a generalisation of the slot machine [14, �2.1], also
known as one-armed bandit. Suppose that a player has n gambling machines (the
�bandits�) and wishes to choose the machine which he plays at each stage so as to
maximise the total expected pay-o�, while the other machines remain silent and
preserve their states. The pay-o� may be discounted with a factor β ∈ (0, 1) if the
time horizon is in�nite or alternatively the average reward can be observed.

The pay-o� probability of the ith machine is unknown. However, gambler may build
up an estimate of the pay-o� probability, the probability that a gambler bene�ts from
gambling with a machine, which will improve as the gambler gains more experience
of the machine. The con�ict, then, is between playing a machine that is known to
have a good pay-o� probability and experimenting with a machine about which little
is known, but which just might prove even better.

A bandit process has a control set A(x), that consists, for every state x, of two
elements 0 and 1. Control 0 freezes the process in the sense that when it is applied



2.3. Value of a MDP and Howard equation 6

no reward accrues and the state of the project or process does not change. In
contrast, control 1 is termed the continuation control. Each bandit process behaves
independently from other bandits like a Markov decision process.

In addition, a standard bandit process is a dummy process that has only one state,
and for which every point of time is a decision time. Thus a policy for a standard
bandit process is simply a random Lebesgue-measurable function I(t) from the pos-
itive real line to the set {0, 1}, specifying the control to be applied at each point in
time. The total reward yielded by such a policy is λ

∫
βtI(t)dt, where the parame-

ter λ depends on the particular standard bandit process. A set of standard bandit
processes with discount factor β is denoted by Λβ, or if there is no question about
confusion, simply Λ.

The state space of a MAB system is the product space of the state spaces of the
bandits, including all the possible state combinations. The objective is to �nd the
best policy α, that is, the optimal decision rule, how the gambling should be carried
on at each stage and state of the state space.

2.3 Value of a MDP and Howard equation

The discounted value of a state of a Markov decision process is the expected total
discounted reward given by a �xed policy α in in�nite time [11, �5.1]

v(α, x) = lim
n→∞E

[
n∑

i=0

βtir(α, x(ti))|x0 = x

]
, (2.1)

where x(ti) is the state of the MDP at time ti. Further the value of the process after
n steps is de�ned as

vn(α, x) = E

[
n∑

i=0

βtir(α, x(ti))|x0 = x

]
(2.2)

Note that the terminal reward r(α, x(ti)) has dependence upon the policy, i.e. the
reward depends on the decision that is made at time t in state xt. Moreover note that
this expectation is always �nite, if the terminal reward r(α, xt) for all t is bounded
by a constant.

The in�nite sum is an inconvenient way to determine the value of a certain state with
a �xed policy. Fortunately the value of a state depends upon the values of other states
of the Markov decision process according to the Howard equation [18, 11, 15, 16]

v(α, x) = r(α, x) + βE[v(α, x′)|x], (2.3)

where x′ is the (stochastic) state of the process after applying a policy α in state x.
Derivation of this formula is intuitive, the value of a project should be equal to the
accrued reward after one step of continuation added with the expected value of the
project after the step, conditioned on the initial condition of the project.

When the transition probabilities of the process are known, it is possible to write
the expectation in (2.3) in terms of the transition probability matrix and values of



2.3. Value of a MDP and Howard equation 7

single states. Thus (2.3) can be rewritten for all states in form

v(α) = r(α) + βP(α)v(α) (2.4)

where P(α) ∈ R
n × R

n (stochastic), r(α) ∈ R
n and v(α) ∈ R

n represent the policy
dependent transition probability matrix, the policy dependent reward vector and the
value vector, respectively. The same notation may also be applied to (2.1) and (2.2).

Equation (2.4) is solvable in most cases, because (I − βP) is invertible:

v(α) = (I − βP(α))−1r(α). (2.5)

If the MDP system does not feature reward discounting and the average reward is
observed instead, the previous equation (2.5) may not be used, since the multiplier
matrix becomes singular. The de�nition of the discounted value of a state for dis-
counted model (2.1) neither applies further, instead, average value (reward) is de�ned
by

v̄(α, x) = lim
n→∞

1
n
E

[
n∑

i=0

r(α, x(ti))|x(t0) = x

]
,

or by vector representation

v̄(α) = lim
n→∞

1
n

n∑
i=0

P ir(α)

︸ ︷︷ ︸
:=vn(α)

.

Further there exists a modi�cation of the Howard equation for the average reward
model

v̄(α) + v(α) = r(α) + P(α)v(α). (2.6)

In the equation v(α) ∈ R
n represents the relative values of di�erent states. If the

Markov process related to policy α is aperiodic and irreducible, every initial state
will produce exactly the same average reward as all other states, but nevertheless
some states still are better than others, because they might produce better rewards
in the early phase of the process. Relative values represent these di�erences. If states
j and k are in the same closed class (transition from j to k is possible in �nite time
with positive probability and vice versa) the following holds

v(α, j) − v(α, k) = lim
N→∞

[vn(α, j) − vn(α, k)].

Hence v equals the asymptotic relative di�erence in total reward that results from
starting the process in state j instead of in state k.

If the MDP is unichain, one may alternatively consider the average reward as con-
stant, independent from the initial state, but when observing the multichain case,
the average reward may depend on the initial state. Often the vector is nevertheless
constant.

Equation (2.6)can be easily motivated as follows. The total reward after n steps is
noted with vN , and vn is related to vn+1 with

r(α) + P(α)vn(α) = vn+1(α). (2.7)



2.4. Dynamic programming equation 8

Alternatively vn may asymptotically be expressed in terms of the average reward

vn(α) → nv̄(α) + v(α). (2.8)

Then (2.8) is substituted in (2.7). If the approximation of the average reward v̄ is
good enough, i.e. the necessary equality Pv̄ = v̄ holds, it follows

r(α) + P(α)(nv̄(α) + v(α)) = (n + 1)v̄(α) + v(α)
⇔ r(α) + nP(α)v̄(α) + P(α)v(α) = nv̄(α) + v̄(α) + v(α)

⇔ r(α) + P(α)v(α) = v̄(α) + v(α),

which is the average model Howard equation (2.6). Note that if some v(α) satis�es
the equation above, also any vector that is got by summing a constant to v(α) also
satis�es the equation. Thus if one decides to solve the relative rewards from (2.6),
an additional constraint is needed.

2.4 Dynamic programming equation

In following sections the objective is to �nd an optimal policy for a Markov decision
process. The optimal policy is the solution of the following dynamic programming
equation also known as Bellman's Equation [2, 18]

v∗ = max
α∈A

{r(α) + βP(α)v∗}, (2.9)

or if the model features average reward optimisation

v̄∗ + v∗ = max
α∈A

{r(α) + P(α)v∗}. (2.10)

In the equation (2.9) v∗ is the optimal discounted reward, which is the value of the
optimal policy. In symbols

v∗ = sup
α∈A

v(α).

In the latter equation (2.10) the average reward is optimal

v̄∗ = sup
α∈A

v̄(α).

The dynamic programming equation appears also in the book of Ross [12], although
instead of maximising the rewards of a MDP, he aims at minimising costs of the
process, that is, the process is considered to cause costs instead of yielding rewards.
If the costs are minimised, the maximum in (2.9) and (2.10) is replaced with minimum
and the rewards r(α) with (commonly non-positive) costs c(α). Nevertheless, in this
work the only cost that is accrued is the loss of time.

There are plenty of di�erent algorithms to infer the optimal policy or an approxima-
tion to the dynamic programming equations. In the following sections some of them
are introduced. In addition, in the experiments section the methods are compared
with an example Multi-armed bandit system.



2.5. Policy iteration 9

2.5 Policy iteration

Policy iteration [11, �6.4] is a fast converging algorithm, which iteratively infers the
optimal value and policy of a Markov decision process. This section is divided into
two subsections, of which the �rst one handles the discounted reward model and the
second one concentrates on optimising the average reward.

2.5.1 Discounted policy iteration

Basically, the idea of policy iteration is simple. The iteration is begun with an
arbitrary policy α0 ∈ A. The policy yields a certain reward that can be evaluated
with the help of Howard equation (2.4). After the evaluation the policy is improved
by selecting a policy that maximises the expected reward with respect to the newly
updated value vector. The algorithm is sketched as follows.

De�nition 1 (Discounted policy iteration algorithm).

1. Set n = 0 and select an arbitrary policy α0 ∈ A.

2. (Policy evaluation) Evaluate the value vector v(αn) ∈ R
n of the policy with the

Howard equation (2.4)

v(αn) = (I − βP(αn))−1r(αn). (2.11)

3. (Policy improvement) Choose αn+1 ∈ A which satis�es

αn+1 ∈ arg max
α∈A

{r(α) + βP(α)v(αn)},

setting αn+1 = αn if possible. Note, that the policy can be inferred trouble-free
through observing the policy component-wise, the matrix notation is used only
to simplify the notation.

4. If αn+1 = αn, stop and set α = αn. Otherwise, increment n by 1 and return
to step 2.

Note that the policy does not have to be unambiguous. The procedure is repeated by
increasing n by one until it is possible to set αn+1 = αn, since then the value vector
cannot improve any further, even if the policy was selected otherwise. Generally, it
is possible that the recursion is in�nite, but in the experiment of this work the set of
policies is �nite and therefore a policy providing optimal discounted reward is surely
found, usually after a few steps of iteration. The advantage of this algorithm is its
rapidity, but meanwhile the algorithm is quite laborious because of the inversion of
the multiplier matrix in (2.11), which becomes more di�cult as the number of states
and actions grow.

2.5.2 Policy iteration with average reward

The average reward model policy iteration [15, 16, 11] is essentially based on the
average reward Howard equation (2.6).

v̄(α) + v(α) = r(α) + P(α)v(α)
⇔ (I − P(α))v(α) = r(α) − v̄(α).

(2.12)



2.5. Policy iteration 10

As in the discounted reward model, in each iteration round the value vector is up-
dated and then the corresponding optimal policy is sought. The problem of the
algorithm is that the Howard equation is not trivially solvable. In principle the
equation above becomes solvable when one of the relative rewards in vector v(α) is
�xed, because then the equation has exactly as many unknown variables as there are
equations � in most cases.

The book of Puterman provides an excellent algorithm for solving the average reward
of a multichain Markov Decision Process [11, �9.2.1]. Instead of �xing a value of v̄
per each recurrent class alternative subject conditions are provided to augment the
problem. The condition used in this work is

P∗(αn)v(αn) = 0. (2.13)

This condition requires that the relative rewards must be equal to zero when they
are time-averaged, since the matrix P∗(αn) is the transition probability matrix of
policy αn with in�nite number of transitions

P∗(αn) = lim
n→∞P(αn)n. (2.14)

Alternatively, if the MDP is unichain, then the transition probability matrix with
in�nite number of transitions may be calculated straightforward with following pro-
cedure [11, �A.4]. If vector π is the stationary distribution of the MDP, it satis�es
equations

πP = π ∧ ‖π‖1 = 1,

and the transition probability matrix P is unichain and aperiodic, then the limiting
matrix (2.14) may be calculated directly with

P∗ = πeT,

where e is a vector whose all components are equal to one. Unfortunately, unlike in
the unichain case, in the multichain case the row vectors of the limiting matrix are
not identically constant. The complete algorithm is sketched as follows.

De�nition 2 (Average reward policy iteration algorithm).

1. Set n = 0 and select an arbitrary policy α0 ∈ A.

2. (Policy evaluation) Obtain a v̄(αn) and a v(αn) which satisfy

(P(αn) − I)v̄(αn) = 0,
r(αn) − v̄(αn) + (P(αn) − I)v(αn) = 0

subject to restriction (2.13).

3. (Policy improvement)

(a) Choose αn+1 ∈ A which satis�es

αn+1 ∈ arg max
α∈A

{P(α)v̄(αn)},

setting αn+1 = αn if possible. If αn+1 = αn go to (b), otherwise increment
n by 1 and return to step 2.



2.6. Value iteration 11

(b) Choose αn+1 ∈ A to satisfy

αn+1 ∈ arg max
α∈A

{r(α) + P(α)v(αn)},

setting αn+1 = αn if possible.

4. If αn+1 = αn, stop and set α = αn. Otherwise, increment n by 1 and return
to step 2.

2.6 Value iteration

Unlike the policy iteration, the value iteration algorithm [11, �6.3] has no potential
calculation problems, but the drawback of the algorithm is that it may converge
slowly and it does not necessarily provide optimal results, but only approximations
of an optimal policy.

The idea of the algorithm is to �nd the ε-optimal value vector through an itera-
tion procedure, which resembles �xed point iteration, and then to determine the
corresponding most valuable policy.

2.6.1 Discounted value iteration

The following rule de�nes the ε-optimal discounted value iteration algorithm.

De�nition 3 (Discounted value iteration algorithm).

1. First the value vector v0 is �xed to an arbitrary value, e.g. v0 ≡ 0, ε > 0 is
chosen and n is set to 0.

2. The value iteration is performed with equation

vn+1 = max
α∈A

{r(α) + βP(α)vn}. (2.15)

3. If

‖vn+1 − vn‖ < ε
1 − β

2β
, (2.16)

terminate the iteration and set

αε ∈ arg max
α∈A

{r(α) + βP(α)vn+1}

component-wise. Otherwise increment n by 1 and repeat step 2.

When condition (2.16) is ful�lled, the value vector is at least ε-optimal [11, Theorem
6.3.1]

‖vn+1 − v∗‖ <
ε

2
.

Despite the algorithm is guaranteed to give only ε-optimal policies, it is nevertheless
possible that the policy is optimal. The optimality can be veri�ed with Equation 2.9
by replacing v∗ with the result of the algorithm, and experimenting, whether the
equation holds or not.



2.7. Greedy policy 12

2.6.2 Value iteration with average reward

Value iteration in the average reward model is based on the idea that the di�erence
of two successive value vectors evaluated by (2.15) setting β to 1 tend to the average
reward assuming that the transition matrix P is acyclic

v̄ = lim
n→∞ |vn+1 − vn|. (2.17)

The relative rewards are then

v = lim
n→∞(vn − nv̄). (2.18)

These results are proven and discussed by Puterman [11, �9.4.1], but there are also
alternative approaches to determine the average reward. One option is to set β near
enough to one and to �nd a policy that is ε-optimal for the chosen discount factor.
In some cases the acquired policy may be the optimal policy. The optimality can be
veri�ed with the dynamic programming equation (2.10), and the optimality topic is
also discussed in [12, �6.17].

Another possible approach is similar to the latter solution. Again, the discounted
reward is evaluated with discount factor β close to one, therefore each value vector
vn is discounted with factor βn, that likewise is almost one. The greater β is, the
better the approximation of the average reward is achieved, when the total discounted
reward is scaled with the weights of the sum, i.e.

∞∑
k=0

βk =
1

1 − β
. (2.19)

Hence the discounted reward normalised with (2.19) is an approximation of the
average reward. The approximation becomes better as β approaches one

lim
β→1

vβ(1 − β) = v̄.

2.7 Greedy policy

If the value iteration algorithm is initialised with an identically zero value vector, the
policy acquired after one step of iteration is actually the naive and simplest estimate
of the optimal policy, the greedy policy. Greedy policy maximises always the imme-
diate reward, i.e. chooses always the control that yields the best possible immediate
reward, no matter what the future rewards would be. In terms of mathematical
symbols the policy is de�ned as

αgreedy := arg max
α∈A

r(α), (2.20)

which can be obtained from (2.15) by setting v ≡ 0, as noted in the beginning of
this paragraph. Unfortunately this policy is not usually the optimal policy [13].



2.8. Index policy on bandit systems 13

2.8 Index policy on bandit systems

The following paragraphs discuss the Gittins index policy, but before discussing
index policies it should be explained what they are in general. Suppose that there
are n projects, each denoted by Bi (i = 1, 2, . . . , n) that produce certain rewards
and should be ordered in some certain way, preferably optimal, to earn the optimal
reward. One possibility to express the policy in question is simply to give an order
explicitly, but an index policy gives the order implicitly.

De�nition 4 (Index policy). Suppose that there is a mapping from every project Bi

and state xi(t) to a real value ν(Bi, xi(t)). An index policy with respect to ν(Bi, xi(t))
chooses always the project k that has the greatest index at time t

k = arg max
1≤i≤n

ν(Bi, xi(t)). (2.21)

Although an index policy was de�ned here exclusively for bandit systems, it is worth
noting that similar index policies may also be constructed in many other environ-
ments.

The next paragraph provides an additional policy that is an index policy, the Gittins
index policy. However, the policy in question is not applicable on Markov decision
processes in general, but on Multi-Armed Bandit systems. Therefore it is naturally
to defer the introduction of the Gittins index out from this MDP chapter to the next
chapter, which is dedicated for the index.

In contrast, the policies de�ned earlier in this chapter can be also applied on Multi-
armed bandit systems. The di�erence to MDPs in general is that the bandits have
only two actions, freeze and continuation controls, but there may be more than one
bandit. One may conveniently suppose that the decision of a bandit is the action
that is associated to the Markov Decision process.

Later on, the bandit processes are called projects and the value functions of single
bandit processes are noted with φi and states with xi. It is also good to note that
the transition probability matrix P in equations from equation (2.4) on in case of
an MAB system is very sparse, because transition from every state combination to
another, arbitrary state combination in general is not possible at all in one single
step, if the states of the projects di�er in more than one project.

In the following section the observed bandit system is supposed to have n machines
or projects, where each of them can stay in m di�erent states. Therefore there
are mn possible combinations of the states and n di�erent decisions for every state
combination, hence the option of evaluating all the policies is not practicable at all,
since there are n(mn) di�erent policies. Thus the Gittins index proves to be very
advantageous policy generator.



Chapter 3

The Gittins index for Markov
bandit processes

In this section the Gittins index is handled in a normal Markov bandit process
setting following the approach by Whittle [19, �14], while the next chapter considers
the setup in a semi-Markov environment studied by Gittins [6] himself. Additionally
both chapters discuss the optimality of the index.

3.1 Whittle's de�nition of the Gittins index

Whittle approaches the multi-armed bandit problem considering it as an optimal
stopping problem. Each project is associated with a 'retirement' reward M and the
gambler has always the option of retiring, that is, stopping a project and getting a
retirement reward of M . The value function of the a project is denoted by φ(x,M)
and it obeys the dynamic programming equation [18, 17], which was already discussed
without retirement option in (2.9),

φ(x,M) = max{M, r(x) + βE[φ(x′,M)|x]}, (3.1)

which may be abbreviated to

φ = max{M,Lφ}. (3.2)

Here x and x′ are the states of the project before and after one stage of operation
and φ(x,M) is the value of the project augmented with the stopping option and
retirement reward M .

With respect to M the function φ(x,M) is non-decreasing and convex [19], and for
values of M greater than a critical value M(x) it is equal to M . Above M(x) it
is optimal to accept the retirement reward instead of continuing the project and at
M(x) the choices between continuing and retiring are equally attractive. This quan-
tity is the best value to be taken as the Gittins index, or more preferably scaled with
the geometric sum of discount factor. Consequently the scaled index represents the
discounted average reward of the project or, as later will be described, the equivalent
constant reward rate

νi(x) = (1 − β)M(x). (3.3)

14



3.2. Properties of the index and φ(x,M) 15

M

φ

φ

(x ,M)

(x ,M)

(2)

(1)

Μ(1) M(2)

Figure 3.1: The graph of φ(x,M) as a function of M . Here x ∈ {x(1), x(2)} and M
are respectively the state of the project and the reward if the retirement option is
accepted, and φ(x,M) is the value function of the corresponding optimal stopping
problem

There is an example graph of two value functions of a project in two di�erent states
x ∈ {x(1), x(2)} in Figure 3.1. As the �gure illustrates, the value functions intersect
with line f(M) = M at points M (1) and M (2).

Note that M is not the fair buy-out price for the project when in state x rather the
size of an annuity that a capital sum M would buy. One has to choose between two
alternatives, either to �invest� in the project with uncertain return for some desired
time and then reconsider the decision, or to move to the 'certain' project which o�ers
a constant income of ν.

3.2 Properties of the index and φ(x, M)

Bertsekas proves an interesting result about the di�erential of the value function
[2, Lemma 1.5.1]. The slope of the value function depends on the retirement time as
follows

Lemma 1. For �xed state x, let τM denote the retirement time under an optimal
policy when the retirement reward is M . Then for all M for which ∂φ(x,M)/∂M
exists the derivative obeys equation

∂φ(x,M)
∂M

= E{βτM |x0 = x}.

If the optimal retirement time is zero, one should accept the retirement reward
immediately. This means that the slope of the value function is one, i.e. φ(x,M) =



3.3. Solving φ-functions 16

M for this �xed state x. If the retirement reward is small, the bandit should be
continued forever, having the retirement time τM = ∞. From the lemma it follows
that the value function is constant at that point. Otherwise the retirement time is
positive and �nite, corresponding to a slope factor greater than zero but less than
one. The proof of the lemma is quite straightforward, but is not essential to this
study and is therefore bypassed. The proof by di�erence quotient is provided in
[2, Lemma 1.5.1].

From the de�nition of the index (3.3) it follows that the index is equal to the equiv-
alent constant reward rate of the project. This quantity is the constant reward of
a standard bandit process that would produce exactly as good rewards as the now
observed bandit B in state x. The quantity will be used more often in the next
Chapter, but here it is needed to understand what quantities the indices really are.

When undergoing the experiments with the Gittins index some interesting observa-
tions were made. The greatest index of the bandit B in some state xmax was always
equal to the immediate reward of the state, say R. This is evident, because a bigger
reward cannot be achieved anyhow, but it is always bene�cial to continue the bandit
at least once, if M is less than R, therefore ν(B,xmax) = R. In contrary, suppose
that the least index of the bandit was assigned to state xmin. The index seemed
to be close to the average reward of the bandit process as the discount factor β
approached one, which is natural, because the index equals the discounted average
reward of the project. Alternative explanation is to observe that it is always worth
to run a project if M is less than the average reward of the bandit process, assuming
that the Markov decision process of the bandit B is unichain.

The bene�ts of the Gittins index include the property that the index is evaluated
in terms of one project alone. The optimal policy is retrieved from the order of the
indices, the project with greatest index should be chosen at each stage of the process.
The n-dimensional problem has been reduced to a stopping problem of individual
projects. Therefore the observations in the following section are concentrated on one
individual project.

3.3 Solving φ-functions

By setting �rst M to zero it is trivial to determine the values of the φ-functions,
because the maximisation in (3.2) can be ignored if the non-negativity of φ-functions
is assumed. The equation (3.2) is reduced to

φ(x, 0) = Lφ(x, 0)
= r(x) + βE[φ(x′, 0)|x].

The expectation of the value function may be expressed with help of the transition
probabilities and other value functions as follows

φ(x, 0) = r(x) + β
∑

k

pjkφ(k, 0),



3.4. The optimality of the Gittins index 17

where j = x, accompanied with r(x) and pjk, which represent the rewards and
transition probabilities of a single project respectively. Further this system of linear
equations can be expressed with matrices

φ(x, 0) = r(x) + βPφ(x, 0)

⇔ φ(x, 0) = (I − βP)−1r(x),

that is, the Howard equation. This system of linear equations is solvable if β < 1,
and the values for φ(x, 0) for every i and x are obtained. These values are, in
fact, the discounted cumulative rewards of B without the retirement option, and
by multiplying them by (1 − β) the corresponding discounted average rewards are
obtained. Further because φ is non-decreasing but at least M and (3.2) holds, it is
clear, that φ(x,M) = φ(x, 0) for every M ≤ M (1), where

M (1) := min
x

φ(x, 0).

This quantity multiplied by (1 − β) is also the Gittins index of the project in state
x(1), where

x(1) := arg min
x

φ(x, 0).

Further it is derived that

φ(x(1),M) =
{

φ(x(1), 0) M ≤ φ(x(1), 0)
M otherwise

,

a one-edge piecewise de�ned function. With this information the algorithm may be
taken one step further, now it is possible to determine the second least index M (2)

and corresponding state x(2). The value function of the project having the second
least index is two-edged, third graph three-edged and so forth.

3.4 The optimality of the Gittins index

In this section the Whittle approach to prove the optimality of the Gittins index is
shown. Whittle provides the proof for the problem augmented with the retirement
option. After solving the problem, the solution for the original problem is also
acquired at once by setting M = 0.

In following the composite state (x1, x2, . . . , xn) is denoted with x and the value
function for the problem of choosing optimally between any one of these projects
and the additional option of total retirement with a terminal reward M is denoted
with Φ(x,M). The function obeys equation

Φ = max{M,max
i

LiΦ}, (3.4)

where Li is de�ned in the same way as L in (3.2)

LiΦ = ri(xi) + βE[Φ(x′,M)|x] := ri(xi) + βE[Φ(x + (x′
i − xi)ei)|xi],

where Li acts only on the xi-argument of Φ, i.e. x′ and x di�er only on the i:th
component.



3.4. The optimality of the Gittins index 18

Furthermore the uniform upper and lower bounds on the reward rates ri(xi) are
denoted with A(1 − β) and B(1 − β), respectively, so that A and B would be the
lower and upper bounds on the total expected discounted reward obtainable if there
was no retirement option. Therefore there exists following limits for the discounted
reward and Mi(xi)

∞∑
k=0

βk min
i

ri(xi) ≤ φi(xi, 0) ≤
∞∑

k=0

βk max
i

ri(xi)

⇔ 1
1 − β

A(1 − β) ≤ φi(xi, 0) ≤ 1
1 − β

B(1 − β).

The statement follows immediately

A ≤ φi(xi, 0) ≤ B.

Thus φi(xi,M) intersects with M likewise inside the same interval, and it is con-
cluded that for Mi(xi) holds

A ≤ Mi(xi) ≤ B ∀i.

3.4.1 Simple evaluation of the value function

In following it is shown that the value function Φ has the evaluation in terms of the
one-project value functions φi. For the time being this evaluation is noted by Ψ

Ψ(x,M) = B −
∫ B

M

∏
i

∂φi(xi,m)
∂m

dm. (3.5)

Lemma 2. The expression (3.5) may alternatively be written

Ψ(x,M) = φi(xi,M)Pi(x,M) +
∫ ∞

M
φi(xi,m)dmPi(x,m), (3.6)

where i is arbitrary (among the project indices)

Pi(x,M) :=
∏
j 6=i

∂φj(xj ,M)
∂M

,

and dmPi(x,m) is the di�erential corresponding to dm.

Proof. Note that Pi(x,M) is non-negative, non-decreasing in M and equal to unity
for

M > M(i) := max
j 6=i

Mj.

The properties of Pi follow immediately from properties of φi(xi,M), since φi, as a
function of M , is non-decreasing, convex and equal to M for M ≥ Mi. Observe that



3.4. The optimality of the Gittins index 19

Mi and M(i) have dependence upon x that is suppressed. With these observations
the proof of lemma is straightforward

Ψ(x,M) = B −
∫ B

M

∏
i

∂φi(xi,M)
∂M

dm

= B −
∣∣∣∣B
M

φi(xi,m)Pi(x,m) +
∫ B

M
φi(xi,m)dmPi(x,m)

= B − φi(xi, B)︸ ︷︷ ︸
=B

Pi(x,B)︸ ︷︷ ︸
=1

+φi(xi,M)Pi(x,M)

+
∫ B

M
φi(xi,m)dmPi(x,m) +

∫ ∞

B
φi(xi,m) dmPi(x,m)︸ ︷︷ ︸

=0

= φi(xi,M)Pi(x,M) +
∫ ∞

M
φi(xi,m)dmPi(x,m).

Consider the quantity

δi(xi,M) = φi(xi,M) − Liφi(xi,M)

and note that δi ≥ 0, with equality for M ≤ Mi which is a direct consequence of
(3.2). Note that the x-argument of M was suppressed to simplify the notation.

Lemma 3. Expression (3.5) and hence (3.6) satis�es the relations

Ψ ≥ M (3.7)

with equality if M ≥ maxj Mj , and

Ψ(M) − LiΨ(M) = δi(M)Pi(M) +
∫ ∞

M
δi(m)dmPi(m) ≥ 0 (3.8)

with equality if Mi = maxj Mj ≥ M .

Proof. Inequality (3.7) and the characterisations of the equality case follow from
(3.5), since ∏

i

∂φi(xi,M)
∂M

= 1 for M ≥ max
j

Mj

and otherwise at most 1, because the partial derivatives are non-decreasing. It is
concluded that

Ψ = B −
∫ B

M

∏
i

∂φi(xi,M)
∂M

dm ≥ B −
∫ B

M
dm = B − (B − M) = M.

The second part (3.8) of the lemma follows immediately from (3.6)

Ψ(x,M) − LiΨ(x,M)

= φi(xi,M)Pi(x,M) +
∫ ∞

M
φi(xi,m)dmPi(x,m)

− Liφi(xi,M)Pi(x,M) − Li

∫ ∞

M
φi(xi,m)dmPi(x,m)

= (φi(xi,m) − Liφi(xi,M))Pi(x,M)

+
∫ ∞

M
(φi(xi,m) − Liφi(xi,M)) dmPi(x,m)

= δi(M)Pi(M) +
∫ ∞

M
δi(m)dmPi(m).



3.4. The optimality of the Gittins index 20

The non-negativity of the expression is trivial, since all the factors are non-negative.
The equality case is an immediate consequence of observations δi(M) = 0 for M ≤
Mi and dmPi(m) = 0 for m ≥ M(i). Then if Mi is the greatest of all Mj :s, i.e.
Mi = maxj Mj, it holds Mi ≥ M(i) and the expression (3.8) is equal to zero as was
claimed.

Theorem 4. The function Ψ(x,M) (3.5) is indeed a solution of the augmented
problem and the Gittins index policy is optimal.

Proof. The assertions of Lemma 3 guarantee that Ψ(x,M) actually satis�es the
dynamic programming equation (3.4) and the Gittins index policy, the policy which
chooses the project with the greatest index (augmented by the recommendation of
termination if M exceeds maxi Mi) provides the maximising option in (3.4). But
since the solution of (3.4) is unique and the maximising option indicates the optimal
action both assertions are proved.

Further an example, in which state follows a di�usion process, is given. The example
is cited from [19, p. 276].

Example 2 (Di�usion process). Suppose that the state x of the project takes values
on the real line, that the project yields reward at rate r(x) = x while it is being
operated, that reward is discounted at rate α, and that x itself follows a di�usion
process with drift and di�usion coe�cients µ and N . This conveys the general idea
of a project whose return improves with its `condition', but whose condition varies
randomly.

The value function obeys in this case the equation

x − αφ + µφx +
1
2
Nφxx = 0, (x > ξ) (3.9)

where ξ is the optimal breakpoint for retirement reward M . The easily veri�able
solution of the di�erential equation (3.9) is

φ(x,M) =
x

α
+

µ

α2
+ cepx, (3.10)

where p is the negative solution of

1
2
Np2 + µp − α = 0,

and c is an arbitrary constant. The general solution of (3.9) would also contain an
exponential term corresponding to the positive root of this last equation, but this will
be excluded since φ cannot grow faster that linearly with increasing x. The unknown
variables c and ξ may be determined by the boundary conditions φ(ξ,M) = M and
φx(ξ,M) = 0. Substituting the solution (3.10) to these boundary conditions gives
�nally the following relation between M and ξ, and further gives a representation of
the Gittins index

ν(x) = αM(x) = x +
µ +

√
µ2 + 2αN

2α
.

The constant added to x represents the future discounted reward expected from
future change in x. This is positive even if µ is negative � a consequence of the fact
that one can take advantage of a random surge against trend if this occurs, but can
retire if it does not.



Chapter 4

The Gittins index for semi-Markov
bandit processes

Whittle's de�nition of the Gittins index in the previous chapter was for Markov
bandit processes as was the original index-approach to solve the multi-armed bandit
problem by Gittins [5] in 1979, but Gittins has generalised his index theorem to apply
also in a semi-Markov setting [6]. In this and following chapters this semi-Markov
approach is introduced.

The di�erence between Markov decision processes and semi-Markov decision pro-
cesses is essentially that semi-Markov decision processes are generalisations of Markov
decision processes that are processed in continuous time. More accurately, according
to [11, �11] semi-Markov decision processes are MDPs in which

a) The decision maker is allowed, or required to choose actions whenever the system
state changes (ti arbitrary).

b) The system evolution is modelled in continuous time.

c) The time spent in a particular state is allowed to follow an arbitrary probability
distribution.

However, for some of the Gittins applications the semi-Markov setup is too general,
and further restrictions may be needed. One such a restriction is Condition A.

Condition A (Decision time restriction). In a �nite time there occurs at most a
�nite number of transitions.

The condition may be de�ned formally as follows. Let P(A|x, u) denote the prob-
ability that the state y of the process immediately after time t belongs to A, given
that at time t the process is in state x and control u is applied. Moreover de�ne
F (B|x, y, u) as the probability that the duration of the interval until the next deci-
sion time belongs to the set B, given that at time t the process is in state x, and
control u is applied, leading to a transition to state y. Then the Condition A may
be expressed in symbols as follows.

21



4.2. Freezing and stopping rules 22

Condition A holds if there exists δ > 0 and ε > 0 such that∫
Θ

F ((δ,∞)|x, y, u)P(dy|x, u) > ε (x ∈ Θ, u ∈ A(x)),

where (δ,∞) denotes the unbounded open interval to the right of δ. In other words,
this condition ensures that the probability, that the interval between decision times,
and therefore between transitions, is greater than δ, is at least ε.

To introduce the de�nition of the Gittins index by Gittins himself it is necessary
to introduce families of alternative bandit processes and their freezing rules �rst, as
they are needed for the de�nition and play an important role in the Gittins book [6],
which this text faithfully follows.

4.1 Families of bandit processes

A simple family of alternative bandit processes (SFABP) is a �nite set of bandit
processes, all of which can be continued at any decision time, that is, in a SFABP
there is no restrictions on choosing di�erent bandits at a decision time. In contrary,
a family of alternative bandit processes (FABP) does not have such a character. The
set of bandits that can be chosen to be continued at a certain decision time is termed
the control set. The allocation rule that chooses a bandit to be continued and others
to remain untouched at every decision time is called a freezing rule.

4.2 Freezing and stopping rules

Any policy for a family of alternative bandit processes realises a certain allocation
rule termed freezing rule for a single bandit B in a family, the policy indicates whether
a bandit process should be continued or remain unchanged at time t. Freezing rule
is expressed with past-measurable random variables fi (i = 0, 1, 2, . . .), where fi

indicates the total time for which control 0 is applied before the (i+1)th application
of control 1 to a bandit process.

Because at all times one and only one bandit process is continued, the quantity fi is
also the total time during which control 1 has so far been applied to the other bandit
processes in the family. Consequently there is no question of fi taking a negative
value.

Respectively, the continuation time is denoted by ti. The quantity is the process time
i.e. the total time when control 1 is applied to bandit B for the (i+1)th time. Thus
the �rst application of control 1 lasts time t1, the second t2 − t1 and ith application
takes time of ti − ti−1.

The time points de�ned by ti and fi are pictured in Figure 4.1. Further the de�nitions
allow one to de�ne the expected total reward from a bandit process B under the
freezing rule f in symbols

Rf (B) = E
∞∑
i=0

βti+fir(ti), (4.1)



4.3. Truncated processes and promotion rules 23

where time point ti + fi is the total time that is elapsed when reward r(ti) accrued
at process time ti is gained.

If a freezing rule allocates a bandit only once starting from time zero, i.e. applies
control 1 from time zero up to some time τ and control 0 always thereafter, equiva-
lently in symbols fi = 0 when ti is smaller than some τ and fi = ∞ if ti ≥ τ for all
i, the freezing rule is termed a stopping rule, where τ is the corresponding stopping
time. Such rules that do not apply control 1 to a bandit at all or instead apply the
control always are also stopping rules having the corresponding stopping times τ = 0
and τ = ∞ respectively. Figure 4.1 illustrates also the di�erence between a freezing
and a stopping rule.

f0

II

I
τ = t

f0+t f1+t f1+t f2+t f2+t f3+t f4+t1 1 2 2 3 4 5

5

Figure 4.1: An illustration of continuation and freezing of a bandit under (I) a stop-
ping rule and under (II) a freezing rule, with equal total continuation time τ .

4.3 Truncated processes and promotion rules

If a bandit process B follows an arbitrary freezing rule up to a certain time point
τ but is never continued thereafter, although it should be continued according to
the rule, the bandit process is called a truncated bandit process at time τ and is
denoted with B∗. If such a truncated bandit is in a SFABP comprising B∗ and
another arbitrary bandit process A only, it follows that the freezing rule for A obeys
condition fi ≤ τ for all i, because the truncated bandit process B∗ is continued at
most up to time τ .

By setting pi = fi − τ the expected total reward from A obeys an alternative expres-
sion

Rf (A) = E

∞∑
i=0

βti+pi+τr(ti) = E

[
βτE

∞∑
i=0

βti+pir(ti)|τ
]

.

The inner expectation of the expression is conditional on the entire realisation of the
bandit process B up to process time τ and is termed Rp(A). The non-positive random
variables pi (i = 0, 1, 2, . . .) that are de�ned by the realisation of the bandit process
B are past-measurable in terms of the bandit process A and they satisfy inequalities
−τ ≤ p0 ≤ p1 ≤ p2 ≤ . . . ≤ 0, since fi ≤ τ for all i. It is clear that (pi + τ)s de�ne a
freezing rule for the bandit process A as well, but since the total freezing time of the
latter rule does not exceed τ , the rule de�ned by pis is distinguished from freezing
rules in general by terming the rule as the promotion rule p for A with respect to
time τ .

A promotion rule for which pi = 0 (i = 0, 1, 2, . . .) is termed a null promotion rule
(or a null freezing rule).



4.4. Gittins' de�nition of the index 24

Figure 4.2 illustrates the promotion rules that would be induced to a bandit process
that was in a family together with the bandit, on which the freezing rules of Figure 4.1
were applied.

f0+t 0 f +t f1+t f +t f +t f3+t f4+t0t=0 1 2

τ

III

IV

= f 4

1 2 3 41 2

Figure 4.2: An illustration of continuation and freezing of a bandit under (III) a null
promotion rule and under (IV) a promotion rule, both with respect to same time τ .

4.4 Gittins' de�nition of the index

In Section �3 it was mentioned that the Gittins index is actually the equivalent
constant reward rate of a process, and the previous de�nition (3.3) was analogous
with the statement. Gittins de�nes the index for a process with a freezing rule f as
the fraction of the accrued reward and their discounts, which indeed is equal to the
parameter that a equally attractive standard bandit process would have.

The expected total reward from a bandit process B under a freezing rule f was
de�ned already by equation (4.1), but Wf (B) de�nes the total accrued discounting
that is necessary to evaluate the equivalent constant reward rate

Wf (B) = E
∞∑
i=0

βfi

∫ ti+1

ti

βtdt.

Thus the index for a freezing rule f is de�ned as

νf (B) =
Rf (B)
Wf (B)

.

The Gittins index for a process B is de�ned as the supremum over the indices of all
possible freezing rules that allocate the process �rst time at time zero

ν ′(B) = sup
{f :f0=0}

νf (B).

The same quantities are de�ned in a similar way for stopping rules,

Rτ (B) = E
∑
ti<τ

βtir(ti), Wτ (B) = E

∫ τ

0
βtdt =

1
log β

E(βτ − 1)

and ντ (B) =
Rτ (B)
Wτ (B)

.

As soon will be discussed, the stopping rules are optimal among the freezing rules.
Therefore the index is de�ned as the supremum over indices for stopping rules.



4.4. Gittins' de�nition of the index 25

De�nition 5 (The Gittins index for a semi-Markov decision process).

ν(B) = sup
τ>0

ντ (B). (4.2)

All the quantities mentioned in this section naturally have suppressed dependency
upon the initial value of the process at time zero, x(0). The de�nitions of νf (B)
and ντ (B) include the assumption that the process is continued at time zero. This
restriction is due to the wish to rule out zero denominators from the fractions, and
actually in the freezing rule case this does not imply loss of generality, because factor
βf0 would be a common factor of both the nominator and denominator.

Because stopping rules are special cases of freezing rules, it is evident that ν ′(B) ≥
ν(B) holds. Actually the stopping rules are optimal among the freezing rules, i.e.
one is allowed to replace the inequality with equality.

Lemma 5. For any bandit process B, ν(B) = ν ′(B).

Proof. The lemma is proven by observing a SFABP, which has only two bandit
processes, namely bandit process B and a standard bandit process Λ. Let f be a
freezing rule for B which freezes the bandit process at time zero but allocates the
bandit at least once with a positive probability, in symbols

P{0 < f0 < ∞} > 0.

The proof then succeeds by showing

1. that a freezing rule f∗ which is otherwise equal to f but the the �rst initial
freezing period is removed and the application times of further controls are
shifted to earlier time points respectively yields a better total reward. Or
alternatively f∗

0 = ∞, i.e. B is not continued at all.

2. that a freezing rule that once allocates the standard bandit process Λ never
switches back to the bandit process B.

The latter statement is evident, because if the expected average reward rate from
the standard bandit process Λ is at some time greater or at least equal to the rate
from B, it always stays the same when only the standard bandit process is allocated,
and B is never thereafter continued. The �rst statement is shown by comparing
the reward produced by the SFABP {B,Λ} and the standard bandit process Λ only,
and concluding, that f∗ is better than f when f∗

0 is zero or in�nite. For details see
[6, Lemma 3.2].

Gittins shows in his book [6] that the index de�ned by (4.2) gives an optimal allo-
cation policy for a simple family of alternative bandit processes.

Theorem 6 (The optimality of the index). A policy for a simple family of alternative
bandit processes is optimal if it is an index policy with respect to
ν(B1, ·), ν(B2, ·), . . . , ν(Bn, ·).



4.5. Comparison of promotion rules 26

The proof of this optimality theorem and its generalisations beyond the bounds of
SFABPs are discussed in the following sections up to an extent that is realistic and
sensible in this work. The following two sections show some intermediate results in
detail, where the next section compares null promotion rules to promotion rules in
general and the following section shows that one cannot pro�t by changing the order
of two bandit processes against the index ν(Bi). The full proof is provided in [6].

4.5 Comparison of promotion rules

The following lemma shows that it is always better to apply a null promotion rule to
a SFABP when there are only two bandits, of which the other is a standard bandit
process with parameter that equals the index of the non-standard bandit process.

Lemma 7. For any bandit process B, the increase in the expected total reward which
is caused by applying a promotion rule p instead of a null promotion rule (both de�ned
with respect to the same time s) is less than or equal to the corresponding increase
for a standard bandit process with the parameter ν(B).

Note that an arbitrary promotion rule of a bandit cannot in general be applied to
another bandit process, because di�erent bandit processes may have di�erent decision
times. Fortunately for a standard bandit process every time point is a decision time,
and therefore there is no problem with applying any promotion rules on the standard
bandit process.

In following the idea of the proof is given. Reader, who wishes to see the explicit
proof, is asked to refer to [6, Lemma 3.3].

Proof. If there was a family of two standard bandit processes, say Λ1 and Λ2, both
with parameter ν(B), and they were gambled under a promotion rule, there would
be no di�erence in the reward stream no matter what kind of promotion rule was
used, because both bandits produce exactly the same rewards. It is supposed that
a certain promotion rule is applied to one of the projects, say Λ2, and the other
project Λ1 is allocated whenever the project Λ2 isn't. With promotion rule p and
null promotion rule 0 the same statement is expressed in symbols as

Rp({Λ1,Λ2}) = R0({Λ1,Λ2}).
The lemma states that if Λ2 is replaced with an arbitrary bandit process (on which
the promotion rule can be applied), the equality sign is replaced with a �less than or
equal�-sign. Thus the opposite statement

Rp({Λ1, B}) > R0({Λ1, B})
contradicts the lemma.

If the inequality above is assumed, it means that there must exist a �nite stopping
time τ such that the equivalent constant reward rate from B up to process time τ is
greater if the promotion rule p is followed instead of the null promotion rule. Let f be
a freezing rule that implements this truncation at time τ by coinciding with p up to
process time τ and then freezes the project for an in�nite time. Thus νf (B) > ν(B),
but this contradicts Lemma 5 and therefore the statement of the lemma holds.



4.7. The index theorem for families of alternative bandit processes 27

4.6 Interchange argument for bandits

For two bandit processes B1 and B2 holds

Lemma 8 (Interchange argument). If bandit processes B1 and B2 have indices ν(B1)
and ν(B2) with ν(B1) > ν(B2), and these are achieved with stopping times σ1 and
σ2, the expected reward from selecting B1 for time σ1, and then B2 for σ2, is greater
than from reversing order of selection.

Proof. For the discount function Wσi holds

Wσi(Bi) = E

∫ σi

0
βtdt = − 1

log β
(1 −Eβσi).

Therefore

Rσ1(B1)
Wσ1(B1)

= ν(B1) > ν(B2) =
Rσ2(B2)
Wσ1(B2)

⇒ (− log β)(Rσ1(B1))
1 −Eβσ1

>
(− log β)(Rσ2(B2))

1 −Eβσ2
,

and dividing by − log β > 0 follows

Rσ1(B1)
1 −Eβσ1

>
Rσ2(B2)
1 −Eβσ2

,

and it is concluded

Rσ1(B1) +Eβσ1Rσ2(B2) > Rσ2(B2) +Eβσ2Rσ1(B1).

which is exactly the inequality that was to be proven.

4.7 The index theorem for families of alternative bandit
processes

This section discusses the proof of the Index theorem for SFABP (Theorem 6). The
theorem is proven indirectly by proving the index theorem �rst for forwards induction
policies and then proving them equal to the index de�ned in (4.2).

4.7.1 Forwards induction policy

A myopic policy is a policy that maximises the equivalent reward up to the next
decision time, but instead a forwards induction policy is a policy which at each deci-
sion time maximises the equivalent constant reward rate up to an arbitrary stopping
time. Neither is in general optimal, because the task is to optimise the reward over
in�nite time. However, the forwards induction policy generates an optimal policy
for simple families of alternative bandit processes. In this section some necessary
notation is introduced followed by an auxiliary theorem, which is also needed for
other purposes.



4.7. The index theorem for families of alternative bandit processes 28

Suppose that there is given a decision processD with a policy g. This decision process
is considered as a bandit process by assigning the freeze control 0 to it, and requiring
that at each decision time either the control 0 or control given by g is applied. If g
is deterministic, stationary and Markov, the application of the continuation control
1 to the decision process D equals to the application of control g(x) to D, where x
is the state of the decision process D at the time of application. With this setting
the process D with policy g can be interpreted as a bandit process and it is denoted
with Dg.

Moreover further notation related to the bandit process Dg is introduced. Let
the quantities ti, xg(t), rg(t) and Rg(D) have the same de�nitions as the corre-
sponding quantities of a bandit process, where Dg is in the place of B. Thus the
quantities typical for a bandit process obey now following expressions: R(D) =
supg Rg(D), Rgτ (D) = Rτ (Dg), Wgτ (D) = Wτ (Dg), νgτ (D) = Rgτ (D)/Wgτ (D),
νg(D) = supτ>0 νgτ (D), and ν(D) = supg νg(D). Similarly Rgf (D) = Rf (Dg), etc.
The index for this decision process ν(D,x) may be simpli�ed, when context makes
the relevant decision process apparent, with ν(x)

To give an explicit de�nition of the forwards induction policy it is necessary to
introduce the following theorem.

Theorem 9. For semi-Markov decision process D satisfying Condition A, and for
which the control set is always �nite:

(i) for any ξ ∈ Θ, ν(ξ) = νgτ (ξ)) for some deterministic stationary Markov policy
g and stopping time τ > 0;

(ii) ν(·) is an X -measurable function;

(iii) the stopping set Θ0(∈ X ) de�ning the τ described in (i) may be chosen to be
either {x : ν(x) < ν(ξ)} or {x : ν(x) ≤ ν(ξ)} − {ξ};
also for any g and τ as described in (i),

(iv) P{νg,τ−t(x(t)) ≥ ν(ξ) for every decision time t < τ |x(0) = ξ} = 1, and

(v) P{ν(x(τ)) > ν(ξ)|x(0) = ξ} = 0, where, for any t, x(t) is the state of D at
time t under policy g.

The proof of this Theorem is bypassed in this work. The reader who wants to study
the proof is asked to refer to [6, Theorems 2.1, 2.2 and 3.4] as well to an introductory
journal article by D. Blackwell [3].

Theorem 9 allows one to de�ne the forwards induction policy formally. Let t0 =
0, t1, t2, . . . be the decision times of a semi-Markov decision process D satisfying
Condition A. The forwards induction policy (FI) is a policy that applies at each
decision time ti policy gi that satis�es νgi(x(ti)) = ν(x(ti)), i.e. chooses the control
that is part of a policy that gives the greatest index for D. The control applied at
time ti may be referred to as ui for later use.

A policy that continues a decision process always until the optimal stopping time,
instead of reconsidering the decision at every decision time, but otherwise follows



4.7. The index theorem for families of alternative bandit processes 29

the principle of the forwards induction policy, is termed modi�ed forwards induc-
tion policy (FI*). Clearly both forward induction policies can be applied to bandit
processes as well.

Remark 1. Modi�ed forwards induction policy ful�ls automatically the de�nition of
index consistence of a policy de�ned by Weber [17, p. 1028]. A policy is said to be
index consistent if a decision process that is once chosen to be continued is continued
without interruption until its Gittins index drops below its initial value. Note though,
a policy that is index consistent is not necessarily forwards induction policy at all,
since the de�nition does not include any conditions on the index optimality.

4.7.2 Optimal policies

The next section shows that the Gittins index is an optimal policy for a simple
family of alternative bandit processes. Before the proof it is necessary to discuss
what the optimal policies are and to introduce some additional notation. First of all
the Gittins index for a SFABP is de�ned.

De�nition 6 (The Gittins index for a SFABP). The Gittins index for a SFABP F
is de�ned similarly as for a single bandit (4.2) as

ν(F ) = sup
g,τ

Rgτ (F )
Wgτ (F )

.

The index is de�ned as the best possible expected constant reward rate of the family
under an arbitrary policy g.

The following lemma shows that there isn't an optimal policy that applies control 1
to a bandit process after the index of the bandit drops below its initial value. The
lemma has to be preceded with introduction of additional notation.

A decision or bandit process that is truncated would generally be still continued after
the truncation time, say τ . The remaining part of the process is termed the residual
decision or bandit process from that time. Because the reward of the truncated
process following policy g is Rgτ (D) and the total reward from the process would be
Rg(D), it is clear that the reward of the residual process is Rg(D) − Rgτ (D).

Then consider some bandit B in a SFABP F when policy g is applied to it. Depend-
ing on the realisations of all the other bandit processes in F a certain freezing rule
will be applied to B. If the dependence upon the other bandit processes is ignored,
the freezing rule to the bandit can be interpreted as a random freezing rule, the
randomising arising from the random realisations of all the other bandit processes.
Such a random freezing rule is termed the freezing rule for B de�ned by g.

In addition, two other types of notation for random freezing rules are de�ned. Let f
be a random freezing rule that is applied to bandit B. A freezing rule that coincides
with f after a truncation time σ but applies control 0 before the truncation time is
denoted with f+ and similarly a freezing rule that coincides with the freezing rule
f up to the truncation time σ and applies control 0 thereafter is denoted with f−.
This notion is used in the proof of the following lemma.



4.7. The index theorem for families of alternative bandit processes 30

For a non-standard bandit process B, initially in state ξ, let successive decision times
occur at process time t0(= 0), t1, t2, . . .. Let σ be the earliest decision time ti for
which ν(B,x(ti)) < ν(B, ξ).

Lemma 10. If f is a freezing rule for which P{∃i such that σ ≤ ti < ∞ and
fi < ∞} > 0, then νf (B, ξ) < ν(B, ξ).

This means that the probability that there exists an optimal freezing rule that applies
the continuation control after the time point where the index drops below its initial
value is zero.

Proof. The index for the freezing rule may be expanded as follows

νf (B, ξ) =
Rf (B, ξ)
Wf (B, ξ)

=
Rf−(B, ξ) +ERf+(B,x(σ))
Wf−(B, ξ) +EWf+(B,x(σ))

. (4.3)

But because the freezing rule f− is at most optimal

Rf−(B, ξ)
Wf−(B, ξ)

= νf−(B, ξ) ≤ ν(B, ξ),

and the residual freezing rule worse than the initial index

Rf+(B,x(σ))
Wf+(B,x(σ))

= νf+(B,x(σ)) ≤ ν(B,x(σ)) < ν(B, ξ),

provided Wf+(B,x(σ)) > 0. This condition follows directly from the assumptions of
the lemma, and the lemma therefore follows from equation (4.3).

4.7.3 Optimality of the index policy

Before the fundamental index theorem, the index theorem for a simple family of
alternative bandit processes, it is necessary to introduce additional notation. Suppose
that there is a family F of alternative bandit processes B1, B2, . . . , Bn with a policy
g applied to it. Further suppose that the process is stopped at time τ and let
τj (j = 1, 2, . . . , n) be the process times of bandit process Bj at that time. Denote

the freezing rule for Bj de�ned by g with fj and let tji (i = 0, 1, 2, . . .) be the process
time of Bj at time of the ith application of control 1 to the process, and with f j

i + tji
the true time when this occurs under f j. Like in the previous section let f j

− and f j
+

be the freezing rules partly coinciding with f j that split the bandit processes to two
parts with respect to process time τj.

With this notation the expected total reward from the truncation of F at time τ
under policy g can be expressed with the following sum

Rgτ (F ) =
n∑

j=1

R
fj
−
(Bj).

Equivalently the expected reward from the residual FABP from time τ onwards under
the same policy g can be expressed by

Rg(F ) − Rgτ (F ) =
n∑

j=1

[Rfj (Bj) − R
fj
−
(Bj)] =

n∑
j=1

ER
fj
+
(Bj , xj(τj)).

This discussion re�ects the proof of the following index theorem.



4.7. The index theorem for families of alternative bandit processes 31

Theorem 11 (The Index Theorem for a SFABP). The classes of index policies,
forwards induction policies and optimal policies are identical for a simple family F
of alternative bandit processes Bj (j = 1, 2, . . . , n).

Essentially the idea of the proof of this theorem resembles the principle of the policy
iteration algorithm (�2.5). The main idea of the proof is to show that it is always
better to use a policy that is obtained by altering the �rst decision of an arbitrary
policy to conform the Gittins index than the arbitrary policy itself. However, before
the main proof of the Theorem the following lemma, which proves the equality of
the index policies and forwards induction policies, is needed.

Lemma 12. (i) The index for the family is the index of the best bandit,
ν(F ) = maxj ν(Bj).

(ii) If f j
− is the freezing rule for Bj(j = 1, 2, . . . , n) de�ned by a policy γ for F and

truncated at time σ, and νγσ(F ) = ν(F ), then ν
fj
−
(Bj) = ν(F ) for all j such

that W
fj
−
(Bj) > 0.

Proof. For the total reward of the SFABP F under policy γ and truncation at time
σ holds

Rγσ(F ) =
n∑

j=1

R
fj
−
(Bj) =

n∑
j=1

W
fj
−
(Bj)νfj

−
(Bj)

≤
n∑

j=1

W
fj
−
(Bj)ν(Bj)

≤ max
i

ν(Bi)
n∑

j=1

W
fj
−
(Bj) = max

i
ν(Bi)Wγσ(F ).

(4.4)

Hence

ν(F ) = sup
g,τ

νgτ (F ) = sup
g,τ

Rgτ (F )
Wgτ (F )

=
Rγσ(F )
Wγσ(F )

≤ max
i

ν(Bi).

However by part (i) of Theorem 9 it follows that there is a stopping time τk for Bk

for which

max
i

ν(Bi) = ν(Bk) = ντk
(Bk).

If gk is the policy for F which applies the continuation control to bandit process Bk

at all times, then

ν(F ) ≥ νgkτk
(F ) = ντk

(Bk) = max
i

ν(Bi).

Consequently ν(F ) = maxi ν(Bi) as required, which allows one to replace the in-
equalities in (4.4) by equalities. The second part of the lemma follows immediately,
because if there was a freezing rule f j

− for which ν
fj
−
(Bj) > ν(F ) it would contradict

the �rst part of the lemma. On the other hand, if there is a freezing rule f j
− for which

ν
fj
−
(Bj) < ν(F ), it will not be allocated, as there are one or more bandits, that have

index ν(F ).



4.7. The index theorem for families of alternative bandit processes 32

Proof of Theorem 11. First de�ne a SFABP G as the residual SFABP obtained by
truncating F at time τk when policy gk is used. If τk is in�nite consider G to include
the n − 1 bandits that are left when Bk is removed from F . This is not possible if
there is only one bandit in the family, but the theorem holds for a family including
only one bandit trivially, so it may be assumed that n > 1.

When G is de�ned as above, it is in a way complementary to a bandit process B∗
k

that is obtained by truncating Bk at time τk, because whenever the continuation
control 1 is applied to a bandit process in F it is applied either to B∗

k or to one of
the bandit processes in G . Thus one is allowed to divide the expected reward of F
into two parts when an arbitrary policy g is applied to it. The division is assisted
with an indicator function Ig(t) that is equal to 1 if and only if control 1 is applied
to B∗

k at time t and zero otherwise. Thus

Rg(F ) = E
∞∑
i=0

βtiIg(ti)rg(ti) +E
∞∑
i=0

βti(1 − Ig(ti))rg(ti). (4.5)

The �rst component is the expected reward Rf (Bk) resulting from the bandit pro-
cess Bk under the freezing rule f which is de�ned by applying policy g to F and
truncating at process time τk. The second component is the reward resulting from
the remaining process and it may alternatively be expressed as

E

[
E

∞∑
i=0

βti(1 − Ig(ti))rg(ti)
∣∣∣B∗

k

]
,

where the inner expectation is conditional on the entire realisation of B∗
k. This

conditioning �xes the random SFABP G and with the policy g for F de�nes a
policy h for G and a promotion rule p for the family (G , h) with respect to time
τk. Thus the second component in equation (4.5) may alternatively be denoted with
ERhp(G ), giving the following expression for (4.5)

Rg(F ) = Rf (Bk) +ERhp(G ). (4.6)

Consider now a policy for F that is a slightly modi�ed version of the original policy
g. The policy applies �rst control 1 to Bk until process time τk, at which the state of
F coincides with the initial state of G , provided τk < ∞. From that time onwards
the policy is de�ned to coincide with h. This composite policy is denoted with ∗g
since it coincides with a FI* policy for the �rst stage, up to time τk. Denoting by 0
the null promotion rule for (G , h) with respect to τk, the reward of the policy ∗g can
again be divided in two parts

R∗g(F ) = Rτk
(Bk) +ERh0(G ). (4.7)

The �rst step in the proof of the optimality of the index policies is to show that the
reward above is at least as good as the reward yielded by policy g, i.e.

R∗g(F ) ≥ Rg(F ). (4.8)

From part (i) of Lemma 12 it follows that

Rf (Bk) = Wf (Bk)νf (Bk)
≤ Wf (Bk)ντk

(Bk) = Wf (Bk)ν(Bk) = Wf (Bk)ν(F ), (4.9)



4.7. The index theorem for families of alternative bandit processes 33

and
Rτk

(Bk) = Wτk
(Bk)ντk

(Bk) = Wτk
(Bk)ν(F ). (4.10)

Lemma 7 states

Rhp(G ) − Rh0(G ) ≤ [Whp(G ) − Wh0(G )]ν(G ). (4.11)

From the de�nition of G and part (v) of Theorem 9, it follows that ν(G ) ≤ ν(F ),
and since the multiplier [Whp(G )−Wh0(G )] is clearly non-negative one may replace
ν(G ) with ν(F ) in the inequality (4.11) giving

Rhp(G ) − Rh0 ≤ [Whp(G ) − Wh0(G )]ν(F ). (4.12)

Now by subtracting (4.6) from (4.7) and by substituting (4.9), (4.10) and (4.12) to
the result gives

Rg(F ) − R∗g(F ) ≤ [Wf (Bk) − Wτk
(Bk)]ν(F ) +E[Whp(G ) − Wh0(G )]ν(F ).

However by noticing that

Wf (Bk) +EWhp(G ) = Wτk
(Bk) +EWh0(G ) =

∫ ∞

0
βtdt

⇔ Wf (Bk) − Wτk
(Bk) = −[EWhp(G ) −EWh0(G )],

the statement of (4.8) follows immediately, the policy that �rst allocates the bandit
with the best index and then continues some �xed policy instead of following the
�xed policy from the beginning is always a good choice.

To complete the proof of the optimality of the index policy the following theorem on
the existence of an optimal policy is needed.

Theorem 13. For a semi-Markov decision process D satisfying Conditions A and
B, and for which the control set A(x) is �nite for all x ∈ Θ holds

(i) There is at least one optimal policy which is deterministic, stationary and
Markov.

(ii) A policy is optimal if and only if, for every x ∈ Θ, the control which it chooses
in state x is such as to achieve the maximum on the right-hand side of the dy-
namic programming equation, which is a modi�cation of (2.9) for semi-Markov
decision processes.

The necessary Condition B restricts the behaviour of the discounted reward on t → ∞
limit.

Condition B. A semi-Markov decision process D satis�es Condition B if
E[βdteRg(D,xg(dte))|x(0) = x] tends to zero uniformly over all policies g as t tends
to in�nity, for all x ∈ Θ.

In the expression the notation dte does not represent the normal ceiling but the next
decision time after time t. The proof of Theorem 13 is not included, but the Theorem
is part of a Theorem in the book of Gittins [6, Theorem 2.2], which is further based
on the previous Theorem in the book [6, Theorem 2.1] and proved by D. Blackwell
[3].



4.7. The index theorem for families of alternative bandit processes 34

Theorem 13 cannot be applied to the proof of Theorem 11 directly, because if F
contains one or more standard bandits, the family does not obey Condition A. How-
ever, this restriction may be lifted by observing the following. In the �rst place there
is clearly no point in continuing any standard bandit process except the one with
the highest parameter value and if such a bandit is once chosen for continuation, it
is continued permanently from that time onwards, as the other bandits will not get
better as they are frozen (see [6, Lemma 3.2]). Hence attention may be restricted to
policies that have the preceding property. This restriction has the e�ect of ensuring
Condition A, and Theorem 13 may therefore be used.

To show that only index policies are optimal it is su�cient to show that (4.8) holds
with strict inequality unless the bandit process selected by g at time zero is one with
an index value at least as great as any other. If g does not have this property then
Whp(G ) > Wh0(G ) and, from part (ii) of Lemma 12, ν(F ) > ν(G ). Thus (4.12)
holds with strict inequality, and therefore so does (4.8). This concludes the proof of
Theorem 11.

Now the index theorem is proven for simple families of alternative bandit processes,
but that is not enough to conclude the optimality of index theorem for one-server
queueing system. In the following chapter the application of the Gittins index to a
queueing system is discussed further.



Chapter 5

Scheduling an M/G/1-queue with
the Gittins index

The Gittins index not only provides an ultimate solution to the multi-armed bandit
problem, but the index can also be used to solve other similar tasks. The purpose of
this work is to convince the reader that the Gittins index may successfully be used
to schedule a one-server queueing system.

The customers in a queueing system may be interpreted as jobs, which are certain
bandit processes. The jobs and their indices will be introduced in the �rst two
sections of this chapter. The latter sections concentrate on generalising the index
theorem for SFABP, in order to make it applicable on queueing systems.

5.1 Jobs

Jobs are simple bandit processes that produce a single positive reward V at a random
time and no further rewards. A simple family of such bandit processes de�nes a
version of the well-known problem of scheduling a number of jobs on a single machine.
The reward produced by such a family under a certain policy is

n∑
i=1

Vie
−γti ,

where Vi is the completion reward of the project completed at time ti that is policy
dependent. The factor e−γti = βti is the discount factor and γ is the corresponding
discount parameter, which reduces the reward relative to the completion time of the
process.

If the discount parameter γ is considered small, the expression above may be well
approximated with a �rst order Taylor-expansion

n∑
i=1

Vie
−γti =

n∑
i=1

Vi − γ
n∑

i=1

tiVi + O(γ2). (5.1)

From the equation it can be seen that the objective to optimise the reward is equal
to the problem of minimising the �rst-order term

∑n
i=1 tiVi, because the �rst term is

35



5.1. Jobs 36

constant and does not depend upon the policy as every job has to be served sooner
or later. The expectation of term

∑n
i=1 tiVi is called the expected weighted �ow-time

(EWFT).

5.1.1 The Gittins index for a job

Gittins derives the general expression for the Gittins index by comparing jobs to stan-
dard bandit processes. Consider that the standard bandit process yield a continuous
reward stream λ, with a time-dependent discount factor βt.

Secondly the job process yields a reward V at completion time and which is likewise
discounted with parameter γ and no further rewards. The time that is needed to
complete the job is distributed with density function f(t), having the distribution
function F (t) respectively. The question is, should one start with the job and after
the completion change to the standard bandit process, or allocate the standard bandit
process only, leaving the job untouched.

The job yields a reward V e−γs in time interval [s, s + ds) with probability f(s)ds,
so the expected accrued reward up to time t obeys equation∫ t

0
V f(s)e−γsds. (5.2)

The reward that the standard bandit process would give in time interval [s, s+ds) is
λe−γsds with probability [1 − F (s)], because the probability that the job completes
after time s is [1−F (s)]. Therefore the reward given by the standard bandit process
is ∫ t

0
λ[1 − F (s)]e−γsds. (5.3)

If there is a time t > 0 that expression (5.2) is greater than expression (5.3), then it
is best to start to work �rst with the job. The condition is identical with inequality

λ < sup
t>0

V

∫ t

0
f(s)e−γsds∫ t

0
[1 − F (s)]e−γsds

. (5.4)

If the job has been continued already for time x without successful completion, the
density f(s) and the distribution function F (s) must be replaced with the conditional
functions f(s)/[1 − F (x)] and [F (s) − F (x)]/[1 − F (x)] respectively. Substituting
these in (5.4) gives the de�nition of the Gittins index for a job, which has been
already continued for time x.

De�nition 7 (The Gittins index for a job with age x).

ν(x) = sup
t>x

V

∫ t

x
f(s)e−γsds∫ t

x
[1 − F (s)]e−γsds

, (5.5)



5.2. The index as a scheduling rule for a queueing system 37

The de�nition can be easily simpli�ed for processes without discounting by setting
γ = 0

ν(x) = sup
t>x

V

∫ t

x
f(s)ds∫ t

x
[1 − F (s)]ds

. (5.6)

Note that also this de�nition of the Gittins index is interpretable as the maximised
equivalent constant reward rate of the job in state x.

5.2 The index as a scheduling rule for a queueing system

The interchange argument of Lemma 8 together with the index Theorem for a SFABP
(Theorem 11) can be generalised for di�erent kinds of bandits, including jobs. The
generalisations that aim at modelling a queueing system with jobs are handled in
the following sections.

One of the generalisations is to allow the job system to have arrivals, that is, new jobs
to arrive in the system. This allows the jobs to be identi�ed as jobs of an M/G/1-
queue, and the Gittins index becomes a scheduling rule for the queueing system. If
the reader is not familiar with the terms mentioned, a short introduction to queueing
systems is provided in Appendix A.

Essentially the setting is to consider a system of jobs allowing simultaneous Poisson
arrivals when discounting is almost completely ignored, i.e. the discounting param-
eter γ is let to approach zero. Suppose that there are n classes of jobs arriving at
Poisson rates λi (i = 1, 2, . . . , n), and that class i jobs have independent service times
all with the distribution Fi(t) = P(σi ≤ t), each of them costing ci per unit time
between its arrival time and the time of completion of its service. Furthermore it is
assumed that the queueing system is stable, i.e. the tra�c intensity is at most one∑

i λiµi < 1, where µi is the mean of distribution Fi, the mean service time.

Naturally it is preferable to minimise the costs of the queueing system by choosing
an optimal scheduling rule. With the notation of the previous paragraph the costs
of the queueing system with n jobs obey equation

C = E

n∑
i=1

citi, (5.7)

where ti is the realised completion time of the job. Thus the objective is to �nd a
policy that minimises the sum.

In Section �5.1 it was noticed that an optimal policy with a small discounting param-
eter γ minimises the expected weighted �ow-time (EWFT) of jobs that have rewards
of Vi and completion times ti, that is

R =
n∑

i=1

tiVi. (5.8)

By parallelling the reward Vi to the cost ci by setting Vi = −ci the expressions (5.7)
and (5.8) obey exactly the same form. Thus one could easily assume, that a Gittins



5.3. Generalisations of the index policy for a SFABP 38

index policy could be an optimal scheduling rule for a queueing system described in
the beginning of this section. This is, indeed, the case.

Gittins claims in his book [6, �3.13] that the Gittins index minimises the expected
weighted �ow time (5.7 and 5.8) in a busy period of a M/G/1 queueing system under
a certain condition. This condition requires that there must exist ε > 0 such that
the Gittins index policy obtained with every discount parameter γ < ε is the same.
This condition is discussed in detail in [6, Condition C†].

Theorem 14. The expected weighted �ow-time (EWFT) in a busy period of a M/G/1-
queue with job classes i (= 1, 2, . . . , n) is minimised by the index policy de�ned by
the γ = 0 indices νi(x) for the individual jobs, ignoring arrivals.

It is rather annoying that the Theorem 14 could only be established under previously
mentioned condition. Fortunately von Olivier has already proven the Theorem with
an discount-free approach [8], hence the condition is not actually needed. But fore-
most, to convince oneself of the optimality of this scheduling rule of an M/G/1-queue
it is necessary to understand, why the Gittins index is the optimal index for families
of jobs.

5.3 Generalisations of the index policy for a SFABP

The generalisations that are needed to enhance a SFABP to function like a queue-
ing system are following. Firstly it is necessary to generalise a bandit process to a
bandit superprocess, which itself is a Markov decision process. This is followed by
implementation of precedence constraints between bandits and the last generalisa-
tion allows the system to have arrivals. These generalisations are discussed in the
following sections in the respective order to an extent that is feasible for this thesis.

5.3.1 Bandit superprocesses and families of superprocesses

The de�nition of a bandit process is too narrow for queueing system purposes, be-
cause a bandit process cannot represent a job in a queueing system with arrivals
�as is�, but a generalisation of the process is needed. The modi�cation of a bandit
process allows a bandit to have more controls besides the continuation and freeze
control.

Suppose that there is a set of decision processes (which may have a larger control
set than a bandit process) {D1,D2, . . . ,Dn} all with the same discount factor β.
Every decision process Di in state xi has a control set Ai(xi), of which every control
produces some reward and changes in the state of the process. A slightly modi�ed
decision process called bandit superprocess or simply superprocess Si is formed from
Di by adding the freeze control 0 to the control set Ai(xi). The freeze control
functions on the decision process exactly as on the bandit processes, it leaves the
state unchanged and produces zero reward.

Analogously to bandit families a family of decision processes is formed from Sis by
requiring that the freeze control is always applied to all but one of the processes in



5.3. Generalisations of the index policy for a SFABP 39

the set {S1, S2, . . . , Sn}, the only di�erence is that it is not su�cient to only choose
a process for continuation, but also a control that is not the freeze control, from the
control set. Such a family is termed a family of alternative superprocesses (FAS),
and if there is no restriction on the set of superprocesses available for selection, the
family is termed simple family of alternative superprocesses (SFAS).

The de�nition of an index policy (2.21) is not adequate for families of alternative
superprocesses, as the de�nition assumes that a bandit has only one continuation
control. Therefore an index policy for superprocesses chooses not only the superpro-
cess with the greatest index but also the control with the greatest index value.

De�nition 8 (Index policy for superprocesses). An index policy for a FAS F with
respect to µ1, µ2, . . . , µn is one which at any decision time when Si is in state xi (i =
1, 2, . . . , n) applies control aj to superprocess Sj, for some Sj and aj such that

µj(xj , aj) = max
{i,ai∈Ai(xi)}

µi(xi, ai).

The Gittins index for a bandit process was de�ned with maximisation over the stop-
ping rules (4.2), but in case of superprocesses the de�nition of the Gittins index has
to be modi�ed. The obvious candidate for the index for a β-discounted set Sβ of
superprocesses is

De�nition 9 (The Gittins index for superprocesses).

ν(S, x, a) = sup
{g:g(x)=a}

νg(D,x) (S ∈ Sβ, x ∈ ΘD, a ∈ AD(x)). (5.9)

The index for a superprocess is determined by choosing for every state x and action a
the supremum of the indices for decision processes Dg which are formed by removing
the freeze control from the superprocesses Sg, where g is an arbitrary policy that
applies control a in state x. The forwards induction and modi�ed forwards induction
policies are de�ned analogously to the corresponding de�nitions for bandit processes.
Instead of choosing only optimal bandit, one chooses also the optimal control.

Remark 2. Gittins remarks that the de�nition of the index for superprocesses may
not be applicable to an arbitrary set Sβ [6, �3.7].

If the family of β-discounted standard bandit processes are included in Sβ, the index
for the family is indeed the index de�ned by (5.9).

Theorem 15. If Sβ ⊃ Λβ and an index exists for Sβ then it must be a strictly
increasing function of ν(S, x, a).

The proof of the theorem succeeds roughly by calibrating the family Sβ with the
standard bandit processes of Λβ [6, Theorem 3.11]. Further it can be shown that the
index of a FAS equals the maximum of the indices of the superprocesses in the family
and that a policy for F is an index policy if and only if it is a forwards induction
policy. The �rst statement is proven as in the proof of Lemma 12 and the second
statement follows partially from the �rst statement. For details see [6, Lemma 3.12].

Remark 2 leaves the question open, which superprocesses may be included in Sβ,
still preserving the index (5.9) as an optimal policy? Trivially, if Sβ is the family



5.3. Generalisations of the index policy for a SFABP 40

of β-discounted bandits Bβ, then the index obeys the form ν(S, x, a) = ν(S, x, 1) =
ν(S, x) as there are no other continuation controls. Thus ν(·, ·, ·) is an index for Sβ

by Theorem 11.

However, Sβ can be extended with many non-bandit type superprocesses, but su-
perprocesses, which lead to optimal policies that do not conform the index ν(·, ·, ·)
have to be excluded from Sβ. Gittins illustrates the possibility of such a con�ict
with a simple example [6, Example 3.13] that is also shortly explained below.

3

2

1

Figure 5.1: Precedence constraints for Example 3

Example 3. Suppose that there are three jobs that have the above illustrated prece-
dence constraints, so that job 3 cannot be started until jobs 1 and 2 have been com-
pleted. Jobs 1, 2 and 3 require, respectively 1, 2 and 1 unit(s) of service time up
to the �rst decision time after allocation of the job, and then terminate with prob-
abilities 1

2 , 1 and 1 yielding rewards 0, 1 and M(> 12
3 ). After these times every job

behaves like a standard bandit process with parameter 0, whether the process has
terminated or not. A reward that is gained at time t is discounted with the factor
(1
2 )t.

The three jobs form a decision process D and, with the addition of the freeze control,
a superprocess S. The controls in a control set, other than control 0, may be identi�ed
with the jobs available for selection, because the jobs have only one continuation
control. The policies of interest are identi�ed by job sequences, with the convention
that a job equivalent to a 0 standard bandit process is selected only if no further
positive rewards are available.

Under this setup the rewards that would be gained under policy 123 or 213 with
initial state x are

R123(D,x) = 0 +
1
2

[
1 ·

(
1
2

)3

+ M

(
1
2

)4
]

=
2 + M

32
and

R213(D,x) = 1 ·
(

1
2

)2

+ 0 +
1
2
· M ·

(
1
2

)4

=
8 + M

32
.

The reward from job 1 is always zero, and the rewards that occur after the completion
of job 1 are gained only with probability of 1

2 . Similarly the total discounts obey
equations

W123(D,x) = 1 +
1
2

[
1
2

+
(

1
2

)2

+
(

1
2

)3
]

=
23
16

and

W213(D,x) = 1 +
1
2

+
(

1
2

)2

+
1
2
·
(

1
2

)3

=
29
16

.



5.3. Generalisations of the index policy for a SFABP 41

The candidates for optimal policies are then

ν(S, x, 1) = ν123(D,x) =
R123(D,x)
W123(D,x)

=
2 + M

46
and (5.10)

ν(S, x, 2) = ν213(D,x) =
R213(D,x)
W213(D,x)

=
8 + M

58
. (5.11)

It would not necessarily be optimal to continue the process (if job 1 terminates) until
the completion of job 3 unless the condition M > 12

3 wasn't stated. Otherwise the
optimal stopping time when starting with job 2 would be t = 2, since the index of
allocating job 2 only and stopping thereafter is 1

6 . With this assumption depending on
the value of M , it is always optimal to continue the process until job 3 is completed.

Clearly, the overall optimal policy is 213, because the expected reward from job 3 is
the same for both policies 123 and 213, but the only other nonzero reward from job 2
occurs in policy 213 earlier than in policy 123. The indices (5.10) and (5.11) give the
optimal policy only if M is smaller than 21. If M > 21 then ν(S, x, 1) > ν(S, x, 2)
which con�icts with the optimal policy. Therefore S is not a superprocess that could
be included in S1

2
.

Gittins suggests that under the following condition the optimal policies of Sβ are
compatible with index policies de�ned by (5.9). The condition is also necessary for
the index theorem for superprocesses.

Condition C. Consider a SFAS {S,Λ}, where Λ is a standard bandit process with
parameter λ0. Suppose that when S is in state x it is optimal to select S and apply
control a. If for all x ∈ ΘD, λ ∈ R, and SFASs {S,Π} (Π a standard bandit process
with parameter λ) for which it is optimal to select S in state x, this implies that it
is optimal to apply a to S in state x. In other words, if it is optimal to choose the
process S, the optimal control is always the same, independent of the other processes.
If S has such a property, then it will be said to satisfy Condition C.

Remark 3. Condition C does not hold for Example 3. To show that consider a
SFAS F of the superprocess S of the example and a standard bandit process Λ with
parameter λ and discrete decision times. Further suppose that and M = 32 and the
discount parameter is still β = 1

2 . Thus the feasible policies for F are following.

g1 : Allocate the standard bandit process only. Yielded reward is

Rg1(F ) =
λ

γ
. (where γ = 1

2)

g2 : Allocate the superprocess with policy 213 and then continue the standard bandit
process. The reward obtained from this policy is

Rg2(F ) = R213(S) + λ

[
1
γ
− W213(S)

]
= R213(S) − λW213(S) +

λ

γ
.

g3 : Otherwise the same setting as in the previous alternative, but now apply policy
123. The reward obtains form

Rg3(F ) = R123(S) + λ

[
1
γ
− W123(S)

]
= R123(S) − λW123(S) +

λ

γ
.



5.3. Generalisations of the index policy for a SFABP 42

By choosing not too great λ the policies g2 and g3 are more preferable than g1. This
is avoided by requiring λ < 17

23 . The rewards of the other two policies obey following
expanded form

Rg2 =
5
4
−

(
29
16

− 1
γ

)
λ and

Rg3 =
17
16

−
(

23
16

− 1
γ

)
λ.

If λ < 1
2 it holds Rg2 > Rg3 , but in contrary if 17

23 > λ > 1
2 the opposite state-

ment holds. Thus the optimal control of the superprocess indeed does depend on
the parameter of the standard bandit process, which violates the Condition C, as
expected.

However, if the condition holds, it is possible to generalise the index theorem for
superprocesses.

Theorem 16. The classes of index policies, forwards induction policies, and optimal
policies are identical for a simple family F of alternative superprocesses Si (i =
1, 2, . . . , n) satisfying Condition C.

To show the equality of index policies and forwards induction policies is possible in a
similar way as in the proof of Theorem 11. Intuitively the equality is clear, because
the allocated bandit will not be changed until its index drops below its initial value,
while other indices remain unchanged. This applies also to later index theorems in
this thesis. The proof of the Theorem is provided in [6, Theorem 3.15].

After having discussed the superprocesses Gittins introduces the stopping option of
a bandit superprocess [6, �3.9]. Gittins proves that the superprocesses that have
an improving stopping option automatically ful�l Condition C, but because certain
precedence constraints are also su�cient to satisfy the condition, it is not necessary
to discuss the stopping option at all. Therefore the next chapter is about precedence
constraints.

5.3.2 Precedence constraints

This section is motivated by the proof of the index theorem for FABPs that have
precedence constraints. Consider a FABP F of superprocesses Bj (j = 1, 2, . . . , n)
just respect to precedence constraints, that is, constraints that deny access to some
project before one or more projects are �rst continued and have reached some certain
states. In practice, the precedence constraints are realised by not allowing policies
that violate the precedence constraints to be applied to the family F .

Assign a valid policy g to the the FABP F to obtain a bandit process Fg. Further
take a stopping time τ for the bandit process, denote the stopping subset of the
bandit's state space at time τ with Θ0 and denote the process times of the bandits
Bi in Fg with τi (i = 1, 2, . . . , n; τ1 + τ2 + . . . + τn = τ). Thus the process time
τi is the time at which bandit Bi reaches the stopping subset Θ0 when policy g is
used, and τi is thus considered g − measurable. g-measurable it is in the sense that
whether or not τi ≥ t depends only on the history of Fg before the process time of
Bi exceeds t.



5.3. Generalisations of the index policy for a SFABP 43

Note that although τis are considered g-measurable, the values are well de�ned
whether or not policy g is used. It is simply the process time of Bi up to the
�rst time when F would have reached Θ0 under g. Some other policy, say h, de�nes
other process times that are considered g-measurable if and only if they equal the
process times τi de�ned by g. The truncated FABP de�ned by truncating Fg at
time τ is said to be h-measurable if τi is h-measurable for all i.

Then consider a modi�ed forwards induction (FI*) policy κ for F and denote the
time at the end of the �rst stage of Fκ with stopping time σ (> 0). Further denote
at time σ truncated FABP with K and the corresponding residual FABP with
G . The next Theorem proves the index Theorem for superprocesses with precedence
constraints, and the proof of the next Theorem is similar to the proof of Theorem 11,
where K and G take the places of bandit process B∗

k and the residual SFABP G
respectively. It is good to note that σ and realisations of K and G are well-de�ned
whether or not policy κ is followed up to time σ. Any policy g applied to F and
to the realisation of K �x the residual FABP G , and de�ne a policy e for G and a
promotion rule for the bandit process Ge with respect to σ.

This discussion of di�erent policies and measurabilities is now exercised by allowing
one to change the used policy of a bandit process without changing the process times
τj to conform the new policy. This is denoted with an extended notation Rhgτ (F ),
which is the total over j = 1, 2, . . . , n of the expected rewards from the occasions
before the process time τj at which control 1 is applied to bandit process Bj , where
τ and τj are de�ned with respect to the policy g as in the previous paragraph, but h
is the policy followed. In symbols

Rhgτ (F ) = E

∞∑
i=0

βtiIhgτ (ti)rh(ti),

where ti (i = 0, 1, 2, . . .) is the ith decision time under policy h, and Ihgτ (ti) = 1 or
0 depending on whether control 1 is applied at time ti to a bandit process Bj whose
process time is less than, or greater than or equal to τj . Also

Whgτ (F ) = E
∞∑
i=0

Ihgτ (ti)
∫ ti+1

ti

βtdt, and νhgτ (F ) =
Rhgτ (F )
Whgτ (F )

.

By the de�nition it is clear that νggτ (F ) = νgτ (F ), so it follows

sup
h

νhκσ(F ) ≥ νκσ(F ) = ν(F ). (5.12)

Demanding that (5.12) holds proves to be an useful condition for a FABP.

Condition D. The FABP F is said to satisfy Condition D if for any initial state
and FI* policy κ,

sup
h

νhκσ(F ) = ν(F ).

The following generalisation of the index theorem shows that the previous condition
is su�cient for Condition C to hold, but before the Theorem it is shown that the
previously mentioned Example 3 violates, as expected, also Condition D.

Remark 4. The above construction of an index �xes the realisation of the bandit
process, and thus it can be assumed that job 1 is completed.



5.3. Generalisations of the index policy for a SFABP 44

If M > 21 the usual index of the bandit process D is obtained with policy 123

ν(D) = ν123(D) =
2 + M

46
,

but the equivalent constant reward rate from policy 213, if the job 1 is completed,
equals

νhκσ(D) = ν{213}{123}4(D) =
4 + M

16

/15
8

=
4 + M

30
.

Evidently the second expression is always greater than the �rst one, thus the supre-
mum of Condition D is strictly greater than the index ν(D). Thus Condition D does
not hold for Example 3.

Theorem 17 (The Index Theorem for a FABP with Precedence Constraints). The
classes of index policies, forwards induction policies, and optimal policies are identical
for a family F of alternative superprocesses with no arrivals (regarded as a SFAS),
and which satis�es Condition D.

Proof. The equivalence of the �rst two classes follows from Lemma 12 and the rest of
the proof is similar to the proof of the Theorem 11. Like already mentioned above, in
the proof the truncated family of alternative bandit processes K takes the place of
the truncated bandit process B∗

k and the residual bandit process G is replaced with
a residual family of alternative bandit processes which is not necessarily simple, but
denoted with the same symbol G .

Like in the proof of Theorem 11 take an arbitrary policy g for F that with the
realisation of K �xes the random FABP G , and de�nes a policy h for G and a
promotion rule p for the bandit process Gh with respect to stopping time σ. This
notation allows again one to divide the total expected reward generated by g on F
in two parts

Rg(F ) = E

∞∑
i=0

βtiIgκσ(ti)rg(ti) +E

∞∑
i=0

βti(1 − Igκσ(ti))rg(ti)

= Rgκσ(F ) +ERhp(G ).

In addition to policies like gκσ, which apply a certain policy at decision times that are
derived from another policy, consider the policy κσh for F (note that the stopping
time is in the middle), which coincides with the FI* policy κ up to time σ, and then
applies policy h to the residual FABP G . This policy is feasible, i.e. it does not
violate precedence constraints, because

• κ is feasible by de�nition, it does not violate the precedence constraints within
K nor between K and G .

• under the policy κσh the process times of each bandit process in F when con-
trol 1 is �rst applied to any bandit process in G are no less, for any realisation
of K , than they are under policy g.

• g is feasible and therefore does not violate the precedence constraints within
G .



5.3. Generalisations of the index policy for a SFABP 45

Thus κσh is feasible. The target of this setting is to prove that

Rκσh(F ) ≥ Rg(F ), (5.13)

i.e. that it is pro�table to modify a policy towards an FI* policy. In this purpose it
is noted that it is possible to split Rκσh(F ) in according to processes K and G

Rκσh(F ) = Rκσ(F ) +ERh0(G ),

where 0 denotes the null promotion rule with respect to time σ. From Condition D
it follows that

Rgκσ(F ) = Wgκσ(F )νgκσ(F ) ≤ Wgκσν(F ),

and by de�nition

Rκσ(F ) = Wκσ(F )νκσ(F ) = Wκσ(F )ν(F ).

The remaining part of the proof follows faithfully the proof of Theorem 11. State-
ment (5.13) is proven in a similar way as statement (4.8), in the proof Rκσ(F )
and Rgκσ(F ) replaces Rf (Bk) and ∗g respectively and instead of using part (i) of
Lemma 12 one should refer to the discussion of Theorem 15 and [6, Lemma 3.12].
With this argumentation the inequality ν(G ) ≤ ν(F ) becomes strict and the proof
is concluded as the proof of Theorem 11 was concluded in the paragraphs following
the proof of statement (4.8).

5.3.3 Arborescent precedence constraints

Example 3 showed that the Gittins index does not always produce optimal policies.
Gittins claims that the essential problem in the setting is that there are initially
two ways, so to speak, of making progress towards the large reward of project 3 [6,
�3.11]. This section shows, that if such precedence constraints are disallowed, the
index produces optimal policies.

The precedence constraints of the Example were illustrated in Figure 5.1, with two
arcs leading from projects 1 and 2 to the project 3. The in-degree of that directed
graph was two, because there were two arcs that led to the project 3. If the precedence
constraints can be expressed with a directed graph, whose in-degree is at most one
and which has no circuits, the graph is called arborescent or an out-tree. Figure 5.2
illustrates some example directed graphs.

The precedence constraints forming out-trees allow one to divide the FABP F to
sub-families Fj(j = 1, 2, . . . ,m)(1 ≤ m ≤ n), with the property that there are no
precedence constraints between bandit processes belonging to di�erent sub-families.
Thus F may also be regarded as a simple family of alternative bandit superprocesses,
the superprocesses being Fjs. Note that the number of jobs available for service at
time zero is at most m.

The advantage of arborescent precedence constraints is that a FABP having such
constraints ful�ls automatically Condition D and therefore satis�es the conditions of
Theorem 17 [6, �3.11].



5.3. Generalisations of the index policy for a SFABP 46

3

2

1

Figure 5.2: Precedence constraints forming out-trees. 1 and 3 represent valid trees
F1 and F3, while 2 has in-degree of two, and thus is an invalid out-tree.

Suppose that a FABP F is divided into m minimal sub-families, each sub-family
having one single initial job, which has to be completed before any of the other jobs
in the sub-family may be started. The minimal sub-families of F are denoted with
Fj (j = 1, 2, . . . ,m) and their corresponding initial jobs with Jj . After completion of
an initial job Jj , the sub-family is divided into further minimal sub-families according
to the number of jobs that become available after completion of Jj . For example,
after completing the initial job of the �rst sub-family 1 in Figure 5.2, the sub-family
is further divided into two sub-families. Note that the number of jobs available after
the completion of the initial job of a sub-family can be arbitrary, even zero. If all
sub-families include only the initial jobs, there are not any precedence constraints in
the FABP F and the family is actually a SFABP.

It is necessary to de�ne an index for an initial job Jj .

De�nition 10 (Sub-family index). If the state of the initial job Jj is xj , the sub-
family index is de�ned as

ν†(Jj , xj) = ν(Fj , xj),

so that the index for an initial job equals the best index of the sub-family Fj .

Remember that the index of the family is de�ned as the best equivalent constant
reward rate of the family, therefore the index ν†(Jj , xj) is the reward rate of Jj itself
and possibly further processes that are preceded by Jj , thus

ν†(Jj , xj) ≥ ν(Jj , xj).

A policy for F is described as a minimal sub-family index policy if it at any deci-
sion time allocates a non-completed project Jj that conforms the index de�ned by
ν†(Jj , xj). It is possible to generalise the index theorem for this index policy.

Theorem 18. The classes of minimal sub-family index policies, forwards induction
policies, and optimal policies are identical for a family F of alternative jobs with no
arrivals and arborescent precedence constraints.

The proof of the Theorem succeeds conveniently with help of the index theorem
(Theorem 11) and is originally based on a journal article by Glazebrook [7]. Gittins
provides also an alternative proof for this Theorem [6, Theorem 3.22].



5.3. Generalisations of the index policy for a SFABP 47

Before the main part of the proof, it is shown that the minimal sub-family index
policy may actually be constructed by reducing the FABP by following instructions.

(i) From the FABP �nd every sub-family, whose only precedence constraint is the
initial job. Such subfamilies always terminate the branches of an out-tree and
are termed terminal sub-families.

(ii) Construct bandit processes by applying index policy to each of the terminal
sub-families and replace every terminal sub-family by the corresponding bandit
process. This kind of bandit process completes just when every constituent
bandit process has completed.

(iii) If the simpli�ed FABP still has precedence constraints, the stages (i) and (ii)
are repeated until F is reduced to SFABP.

(iv) Form a bandit process B by associating this SFABP with an index policy.

The reward process generated by B is the same as that generated by F under a
minimal sub-family index policy. This minimal sub-family index policy is given by
the nested index policies de�ned by step (ii).

The proof of the Theorem succeeds by showing inductively that this construction
yields an optimal policy for the FABP F .

Proof. The �rst task is to show the optimality of the above de�ned nested index
policies. Like already stated, the proof succeeds by induction on the number of
nodes d. The nodes are jobs that precede any other job, i.e. are all jobs excluding
jobs that are not leaves.

Suppose �rst that d = 1. This equals the situation that the FABP is only a single
terminal sub-family. After completion of the initial job the FABP is reduced to a
simple FABP and Theorem 11 applies directly, thus it is optimal to schedule the job
preceded by the initial job according to the index. If there are two jobs with equal
index, the job with the lowest subscript is chosen. This is exactly what is done by
the step (ii) in the construction above, and therefore the nested index policies are
optimal for d = 1.

Secondly it is supposed that the nested index policies are optimal for d ≤ k and case
d = k + 1 is observed. As soon as any job which precedes another job is completed,
the system reduces to the case d = k, thus the nested index policies hold from that
time onwards. Thus the nested index policies are also optimal when d = k + 1. This
completes the induction.

The optimality of the nested index policies is now proven, but further discussion is
needed in order to show that the nested index policies indeed are index policies for
F and that they are also forwards induction policies. The last equality follows again
from the discussion of Theorem 15 and the fact that nested index policies are index
policies also follows from the previously mentioned Theorem and from the fact that
it is an index policy. This discussion concludes the Theorem.

With the above result it is clear that the sub-family index policies are optimal for
FABP:s with arborescent precedence constraints, but the question about allowing



5.3. Generalisations of the index policy for a SFABP 48

arrivals is still left open. The next section concentrates on removing this limitation
by considering them as precedence constraints in an out-tree.

5.3.4 Arrivals

The main idea of accepting arrivals in a FAS is to place the arriving jobs to the
out-trees of completing jobs. In this setting any existing job may be taken as a
precedence constraint for the arriving jobs.

The arriving jobs are handled by the following procedure. Suppose that the arriving
jobs arrive in the system only when some certain job, in this case job B, reaches some
certain subset of its state space, say ΘC . The subset ΘC must be countable. The
arriving jobs form a set or batch, so to say, that is denoted with T (B,x) and always
includes a standard job process with parameter −M (M � 1). If a job process B
has the properties described, it is termed to generate random out-tree of successors
or, equivalently, to have job process- (or bandit-)linked arrivals.

This setting may sound quite restrictive, but it actually isn't that limited, because
there may be a set assigned to every job B and state x, i.e. every state x can be
considered as a completion state. Thus the completion state x ∈ ΘC of the job B is
can be regarded as random, so in general the jobs preceded by job B are random.
In addition the batch T (B,x) may also be random, and there is no restriction why
job B could not be included in the batch, so in practice it is possible that the job B
is continued before and after the arrival of the batch T (B,x).

Nevertheless every arriving job of the batch T (B,x) must have similar properties
as the original job in the system, and the arriving jobs may have further their own
completion states and corresponding successor jobs. Further all the precedence con-
straints must be arborescent, thus precedence constraints between batches are not
allowed.

The arrival process is illustrated by the following example.

Example 4. Suppose that there is a system of alternative superprocesses that have
precedence constraints and arrivals. Initially at time t0 there are only two jobs B1

and B2, which belong to di�erent classes. Suppose that the job belonging to the class
pictured with light grey in Figures 5.3 and 5.4 has higher index, so that is processed
�rst. But after some time the job B1 reaches a completion state x1, at which a
batch of new light-class jobs arrive, T (B1, x1) = {B1, B3, B4}. The batch includes
also job B1, which is a precedence constraint for the two other jobs. Thus the job
is continued further at once. When completed, the scheduler chooses the next job
with the highest available index. Suppose that it is job B3 and then B2, and assume
further that there is no arrivals during job B3. But when job B2 reaches state x2,
again a new job arrives in the system, namely B5, augmented with the remaining
part of B2, which is continued to the end. The scheduler then chooses B5 and B4

in this order, which ends the busy period. The realised process is illustrated by the
bottom line of Figure 5.3 and Figure 5.4 illustrates the precedence constraints and
the realised process by an arborescent graph.



5.3. Generalisations of the index policy for a SFABP 49

t0 x1 t1 t2 x2 t5t4t3

B2B2
B4

B2

B1

B5

B5

B3

B4

B4

B4

B4

B2B1 B3

x1

t2

x2

t4

t0

Figure 5.3: The scheduling and arrival processes of Example 4.

It is not clear if Condition D remains satis�ed as new batches of jobs arrive in the
system, but if the Condition D holds, Gittins states [6, p. 75] that the proof of
Theorem 17 holds and may be proven as in case of no arrivals with the exception
that there is no �xed limit on the number of the jobs in the system. Further he claims
that the result applies also on the index theorem for stoppable jobs mentioned in the
end of Section �5.3.1. The discussion leads with [6, Proof 1 of Theorem 3.22] to the
�nal generalisations of the index theorem.

Theorem 19. The classes of minimal sub-family index policies, forwards induction
policies, and optimal policies are identical for a FABP all of whose precedence con-
straints are de�ned by an out-tree and the presence of a job-process linked arrival
process.

Unfortunately this theorem covers only arrival processes that are dependent on the
completion of existing jobs in the system, thus excluding arrival processes which are
independent of the job being processed and which have independent inter-arrival
times.

An important exception to this restriction are arrival processes that are memory-
less. Further suppose that the compositions of the di�erent batches are identically
distributed and independent of previous history. The Poisson arrival process can be
regarded as taking place in process time for the various jobs with assumption that
the process does not depend on the particular job. Alternatively the arrival process
can be regarded as taking place in real time, but it makes no di�erence, whether
the �rst or second statement is assumed. Because Poisson process is memoryless the
arrival process is the same in both cases.

As mentioned earlier in this section, it is possible to include the completed project in
the batch that arrives in the system. Therefore one may handle the arrivals during
the processing of a job by including the remaining portion of the job in the set of
successors, as a precedence constraint for the other successors. Note though, that
this also alters the minimal sub-family indices of the arriving jobs. Thus the theorem
applies also when the arrival process is Poissonian.



5.3. Generalisations of the index policy for a SFABP 50

B1

B3

B4

B2 B5

Figure 5.4: The precedence constraints and the scheduling of the jobs discussed by
Example 4.

Theorem 20 (The Index Theorem for a FABP with Poisson arrivals). For a FABP
with Poisson arrivals and any arborescent precedence constraints (possibly random),
the classes of minimal sub-family index policies, forwards induction policies and op-
timal policies are identical.

Note that this Theorem holds even if the process happens in discrete time with the
modi�cation that Poisson arrival process is replaced with Bernoulli arrival process.

The following section concludes the theory by showing that the sub-family index
policies and the Gittins index policies are equal.

5.3.5 Equality of the sub-family indices and the indices

In the previous section it was shown that sub-family indices are optimal policies for
FABPs with Poisson arrivals and arborescent precedence constraints, and that the
index policies minimise the EWFT of a M/G/1-queue (Theorem 14) that can be
alternatively be regarded as a FABP. Fortunately it can be shown that under the
same assumptions as the Theorem 14 was given, it is possible to show that policies
de�ned by sub-family indices equal the normal Gittins index policies. For that is is
satisfactory to show that the following theorem holds.



5.3. Generalisations of the index policy for a SFABP 51

Theorem 21. The sub-family index ν†(x) is an increasing function of the index ν(x)
as x takes di�erent values and discounting is ignored (γ = 0).

Proof. For this proof it is necessary to assume the same condition that was assumed
for Theorem 14, i.e. the index policy de�ned by a small enough discount factor
must equal the non-discounted policy. In following the index ν†

i (x) is de�ned as the
supremum over all policies and stopping times of the average reward rate up to a
stopping time obtainable from a sub-family, which is initiated by class i job of age x.
The class i refers to the type of the arriving job by means of Section �5.2. Further
the cost per unit time ci associated to class i (= 1, 2, . . . , n) is treated as reward as
in the section mentioned above.

In addition the notation includes vector T = (T1, T2, . . . , Tn), in which Ti is the
truncation age of class i jobs besides the initial job, whose truncation age is denoted
by y. Thus one may de�ne Ri(x, y, T ) as the expected total reward from the minimal
sub-family initiated by a class i job of age x up to truncation ages y and T , and
Wi(x, y, T ) as the corresponding expected total time. With this notation the index

ν†
i (x) may be de�ned as follows

ν†
i (x) = sup

{y>x,T>0}

Ri(x, y, T )
Wi(x, y, T )

. (5.14)

If y = Ti the expressions Ri(x, y, T ) and Wi(x, y, T ) may be simpli�ed by writing

Ri(x, Ti, T ) = Ri(x, T ) and Wi(x, Ti, T ) = Wi(x, T ).

Now suppose that class i job is processed until it either reaches age y or is �nished,
whichever occurs �rst, and denote the age of the initial job at the end of this period
by S. Further denote the number of class j (= 1, 2, . . . , n) jobs arriving during the
period by Nj(S). Thus the expected total reward Ri(x, y, T ) may be rewritten as
follows.

Ri(x, y, T ) = ciP{S ≤ y} +
n∑

j=1

Rj(0, T )E[Nj(S)],

where the �rst term is the expected reward of the initial job and the latter term
the expected reward from all other jobs. The expected number of arrivals may be
rewritten by means of corresponding arrival rates λj . Thus

Ri(x, y, T ) = ciP{S ≤ y} +
n∑

j=1

Rj(0, T )E{E[Nj(S)|S]}

= ciP{S ≤ y} +
n∑

j=1

Rj(0, T )E[λj(S − x)].

Now the probability P{S ≤ y} and expectation of S − x may be expressed alterna-
tively by means of the distribution function Fi(s) so that

Ri(x, y, T )
ci[Fi(y) − Fi(x)]

1 − Fi(x)
+

n∑
j=1

λjRj(0, T )

∫ y
x [1 − Fi(s)]ds

1 − Fi(x)
.



5.3. Generalisations of the index policy for a SFABP 52

Meanwhile, the expected time Wi(x, y, T ) obeys expression

Wi(x, y, T ) = E[S − x] +
n∑

j=1

Wj(0, T )E[Nj(S)]

=


1 +

n∑
j=1

λjWj(0, T )


 ∫ y

x [1 − Fi(s)]ds

1 − Fi(x)
.

Substituting Ri(x, y, T ) and Wi(x, y, T ) in (5.14) gives

ν†
i (x) = sup

{y>x,T>0}





ci[Fi(y) − Fi(x)]∫ y

x [1 − Fi(s)]ds
+

n∑
j=1

λjRj(0, T )




×

1 +

n∑
j=1

λjWj(0, T )


−1

 .

Now the de�nition of the Gittins index ν(x) (5.6) is recalled and adapted for class i
jobs by

νi(x) = sup
{y>x}

ci[Fi(y) − Fi(x)]∫ y
x [1 − Fi(s)]ds.

This expression is part of the latest expression for ν†
i (x), and by substituting νi(x)

to the expression following is obtained

ν†
i (x) = sup

{T>0}

νi(x) +
∑n

j=1 λjRj(0, T )
1 +

∑n
j=1 λjWj(0, T )

,

which clearly shows that ν† is an increasing function of ν.

Thus the Gittins index policies do minimise the EWFT of an M/G/1-queue.



Chapter 6

Experimental comparison of
di�erent policies in a MAB system

In this section the policies introduced in Sections �2.5, �2.6 and �3.1 are compared
with a simple experiment conducted with help of Mathematica computing environ-
ment. The general setup of the experiments requires following initial variables to be
set properly.

n The number of projects

m The number of states that every project has

β The discount factor inside interval (0, 1).

r The random rewards for every state and project (matrix size n × m)

p The transition probability matrices (m × m matrices for every n projects)

P The policy-implementing probability transition matrix
(matrix dimensions mn × mn)

The Mathematica source �les in Appendix B also provide tools for generating the
transition probability matrices and rewards randomly. The transition probabilities
are drawn from an exponential distribution with the expectancy of one, and then
normalised. This approach produces relatively small but also greater probabilities,
which proved to be interesting, when the probabilities are combined with uniformly
randomised rewards. For example, if a state with high reward is assigned to transition
probabilities that lead to a quick transition away from the state, the state was not
then necessarily preferable. However, in this experiment, the data was chosen by
hand to illustrate the properties of the policies and Gittins indices more predictably.

Experiment data In this experiment the following transition probability matrices
were used.

p1 =
1
10




0 0 0 10
0 4 5 1
7 1 2 0
1 1 5 3


 p2 =

1
20




15 3 0 2
7 2 7 4
0 2 5 13
1 3 3 13




53



6.1. Discounted models 54

p3 =
1
20



1 0 0 19
4 4 12 0
2 6 6 6
0 0 2 18




The rewards were chosen as follows

r1 = [7 6 3 1] , r2 = [3 4 2 5] , r3 = [7 3 4 1] ,

and the applied discount factor was β = 0.9.

The discussion is divided into two main sections according to whether the method
features discounting or not. The �rst section discusses the discounted case.

6.1 Discounted models

All the discounted iteration models, value iteration (�2.5), policy iteration (�2.6)
and the Gittins index policy (�3.1) yielded exactly identical policy, although the
Gittins index and even policy iteration were obviously faster than the value iteration.
Both iteration models showed correctly that project 2 was the best project, because
according to the policy the system locks sooner or later to states, in which only
project 2 is allocated. This is natural, because the project 2 has the greatest average
reward of the projects and the discount factor is not signi�cant, so there is no point
continuing the other projects after they have reached some unpreferable state, which
in this experiment is in the both cases state number 4. Note though that it is not
always optimal to continue the project with the highest average reward if remarkable
discounting is used. To convince the reader about this, a short example is provided.

Example 5. Suppose that there is a family of two projects, of which one is a dummy
standard-alike project that yields reward of 1 at every decision time. The second
process is supposed to have two states, of which the �rst state produces immediate
reward of 2 and the other 0. Further suppose that the process transfers from the �rst
state to the other with probability of 10% and from the second state to the other
with probability of 100%. Further assume that the discount factor is β = 1

4 and the
process after every decision time takes always one unit of service time. Thus the
average reward of the �rst project without discount is exactly 1 and of the second
project 10

11 · 2 ≈ 1.82. Suppose then that the second project is at the state that gives
immediate reward of zero. With this initial setting the discounted reward of the �rst
project is 4

3 and of the second project at most 1 (assuming hypothetically that the
state of the project never changes back to the worse state again). Therefore it is
optimal to choose the project with smaller average reward.

The stopping criteria (2.16) in the value iteration was the computational accuracy
of Mathematica, i.e. the iteration was continued until Mathematica considered the
condition v = Lv to hold. This is in practice about 15 digits and the iteration took
283 rounds to complete.

The policy iteration was naturally continued until the policy was �xed. This took
approximately �ve iteration rounds, depending on the random starting policy. Al-
though the policy iteration practises matrix inversion, it was considerably faster than
the value iteration algorithm, and produced exactly same results.



6.1. Discounted models 55

The experiment results with the absorbing states highlighted are available in Ta-
ble 6.1. The Gittins index does not provide values for state combinations of the
Table, but instead of every single state of every project. The Gittins indices are
shown in Table 6.2, the Gittins index policy within Table 6.1 and the φ-functions
de�ned by (3.1) are illustrated by Figure 6.1.

By observing the �gure one can notice that the states that are associated with
the highest index, which is also the index of the project, are not necessarily that
attractive when there is no augmentation (M = 0). The fact that the stopping
option is excluded naturally means that the values are the expected discounted total
rewards of the projects with corresponding initial states with in�nite time horizon.
The non-augmented values are also provided in Table 6.2.

Projects 1 and 3 have some quick transitions to and from some states. For example,
if project 1 reaches state 1, it will immediately transfer to state 4, thus making the
state 1 less preferable, in spite of a high immediate reward of 7. In contrary, project
2 does not have such properties, and the value functions do not intersect with each
other.

Table 6.1: Discounted reward model: Value iteration and
Policy iteration give exactly identical results.

Value iteration Policy iteration Gittins index

Project Discounted Discounted Discounted Discounted Discounted
1 2 3 value policy value policy policy

1 1 1 42.80 1 42.80 1 1
1 1 2 40.38 1 40.38 1 1
1 1 3 40.76 1 40.76 1 1
1 1 4 39.62 1 39.62 1 1
1 2 1 44.21 1 44.21 1 1
1 2 2 41.65 1 41.65 1 1
1 2 3 41.99 1 41.99 1 1
1 2 4 41.19 1 41.19 1 1
1 3 1 43.91 1 43.91 1 1
1 3 2 41.22 1 41.22 1 1
1 3 3 41.66 1 41.66 1 1
1 3 4 40.86 1 40.86 1 1
1 4 1 46.29 1 46.29 1 1
1 4 2 43.87 1 43.87 1 1
1 4 3 44.16 1 44.16 1 1
1 4 4 43.52 1 43.52 1 1
2 1 1 44.63 3 44.63 3 3
2 1 2 42.24 1 42.24 1 1
2 1 3 42.52 1 42.52 1 1
2 1 4 41.66 1 41.66 1 1
2 2 1 45.69 3 45.69 3 3
2 2 2 43.19 1 43.19 1 1
2 2 3 43.45 1 43.45 1 1
2 2 4 42.85 1 42.85 1 1
2 3 1 45.47 3 45.47 3 3

continued on next page



6.1. Discounted models 56

continued from previous page

Value iteration Policy iteration Gittins index

Project Discounted Discounted Discounted Discounted Discounted
1 2 3 value policy value policy policy

2 3 2 42.87 1 42.87 1 1
2 3 3 43.20 1 43.20 1 1
2 3 4 42.60 1 42.60 1 1
2 4 1 47.38 3 47.38 3 3
2 4 2 45.00 1 45.00 1 1
2 4 3 45.22 1 45.22 1 1
2 4 4 44.74 1 44.74 1 1
3 1 1 41.95 3 41.95 3 3
3 1 2 39.32 1 39.32 1 1
3 1 3 39.64 1 39.64 1 1
3 1 4 38.67 1 38.67 1 1
3 2 1 43.15 3 43.15 3 3
3 2 2 40.40 1 40.40 1 1
3 2 3 40.69 1 40.69 1 1
3 2 4 40.01 1 40.01 1 1
3 3 1 42.90 3 42.90 3 3
3 3 2 40.03 1 40.03 1 1
3 3 3 40.41 1 40.41 1 1
3 3 4 39.72 1 39.72 1 1
3 4 1 45.09 3 45.09 3 3
3 4 2 42.48 2 42.48 2 2
3 4 3 42.73 2 42.73 2 2
3 4 4 42.18 2 42.18 2 2
4 1 1 39.78 3 39.78 3 3
4 1 2 37.09 3 37.09 3 3
4 1 3 37.51 3 37.51 3 3

4 1 4 36.25 2 36.25 2 2

4 2 1 41.34 3 41.34 3 3
4 2 2 38.50 2 38.50 2 2
4 2 3 38.88 2 38.88 2 2

4 2 4 37.99 2 37.99 2 2

4 3 1 41.01 3 41.01 3 3
4 3 2 38.02 3 38.02 3 3
4 3 3 38.51 3 38.51 3 3

4 3 4 37.62 2 37.62 2 2

4 4 1 43.66 3 43.66 3 3
4 4 2 40.96 2 40.96 2 2
4 4 3 41.29 2 41.29 2 2

4 4 4 40.58 2 40.58 2 2



6.2. Average reward models 57

Table 6.2: Discounted Gittins indices. Column A: Gittins indices (augmented prob-
lem), Column 0: Indices with M = 0, Column R: Immediate reward
State B 1 2 3 4

Project O A 0 R A 0 R A 0 R A 0 R

1 7.00 3.69 7 6.00 3.96 6 4.66 3.63 3 3.32 3.32 1
2 3.62 3.62 3 4.30 3.80 4 3.84 3.76 2 5.00 4.06 5
3 7.00 2.17 7 3.89 2.34 3 4.26 2.27 4 1.60 1.60 1

6.2 Average reward models

The result of the same methods, when observing the average reward, was not as
consistent as it was in the previous case, although the primary criteria of maximising
the average reward was ful�lled by all methods. All the methods produced policies
that eventually allocated only project 2, which has the best average reward of the
three projects, namely 3.86. Instead the relative rewards and recurrent states varied
from method to another and no single evident reason for this was found. The reasons
could include e.g. computational inaccuracy or bugs in the program code. The
occurred problems are discussed in detail in following paragraphs.

The policy iteration algorithm showed up to be the most problematic case. The algo-
rithm produced almost always di�erent results, depending on the initial randomised
policy. Evidently the results produced by the algorithm were not always optimised
in means of the relative rewards, because occasionally the algorithm locked into a
policy that left projects 1 and 3 untouched after they had reached state 1 that was
the state that produces the best immediate reward of seven. Obviously this is not
an optimal policy by means of relative rewards.

The relative reward produced by the value iteration algorithm proved to be always
(i.e. no counterexamples came upon) better than the rewards produced by the policy
iteration algorithm. Unexpectedly, the policy obtained by using the value iteration
algorithm almost never allocated project number 3, but project 2 was allocated
always when project 1 had reached state 4, no matter what the state of project 3
was.

The Gittins index policy in this experiment was produced by a setting that almost
ignored the discounting, but not all of it, by using discount factor β = 0.999. The
results were generally better than the result produced by the policy iteration algo-
rithm, but not better than by the value iteration algorithm. The Gittins indices
obtained are available in Table 6.4 and the other results results with the recurrent
states highlighted are available in Table 6.3.



6.2. Average reward models 58

30 40 50 60 70

30

40

50

60

70

(a) Project 1

35 40 45 50 55
35

40

45

50

55

(b) Project 2

10 20 30 40 50 60 70

10

20

30

40

50

60

70

(c) Project 3

state line style

1
2
3
4

Figure 6.1: Illustration of φ-functions

Table 6.3: Average reward model

Value iteration Policy iteration Gittins index

Project Relative Av. reward Relative Av. reward β = 0.999
1 2 3 value policy value policy policy

1 1 1 3.51 1 3.51 3 1
1 1 2 1.09 1 0.59 1 1
1 1 3 1.38 1 1.04 3 1
1 1 4 0.20 1 0.20 1 1
1 2 1 5.74 1 5.74 3 1
1 2 2 3.33 1 2.82 1 1
1 2 3 3.61 1 3.28 3 1
1 2 4 2.44 1 2.44 1 1
1 3 1 5.86 1 5.86 3 1
1 3 2 3.44 1 2.94 1 1
1 3 3 3.73 1 3.39 3 1

continued on next page



6.2. Average reward models 59

continued from previous page

Value iteration Policy iteration Gittins index

Project Relative Av. reward Relative Av. reward β = 0.999
1 2 3 value policy value policy policy

1 3 4 2.55 1 2.55 1 1
1 4 1 8.74 1 8.74 3 1
1 4 2 6.32 1 5.82 1 1
1 4 3 6.60 1 6.27 3 1
1 4 4 5.43 1 5.43 1 1
2 1 1 5.91 1 5.91 3 3
2 1 2 3.49 1 2.99 1 1
2 1 3 3.78 1 3.45 3 1
2 1 4 2.61 1 2.61 1 1
2 2 1 8.15 1 8.15 3 3
2 2 2 5.73 1 5.22 1 1
2 2 3 6.01 1 5.68 3 1
2 2 4 4.84 1 4.84 1 1
2 3 1 8.26 1 8.26 3 3
2 3 2 5.85 1 5.34 1 1
2 3 3 6.13 1 5.8 3 1
2 3 4 4.96 1 4.96 1 1
2 4 1 11.14 1 11.14 3 3
2 4 2 8.72 1 8.22 1 1
2 4 3 9.01 2 8.67 3 1
2 4 4 7.83 1 7.83 1 1
3 1 1 2.74 3 2.74 3 3
3 1 2 0.32 1 -0.18 1 1
3 1 3 0.60 1 0.27 3 1
3 1 4 -0.57 1 -0.57 2 1
3 2 1 4.97 1 4.97 3 3
3 2 2 2.55 1 2.05 1 1
3 2 3 2.84 1 2.50 3 1
3 2 4 1.66 1 1.66 1 1
3 3 1 5.09 1 5.09 3 3
3 3 2 2.67 1 2.17 1 1
3 3 3 2.95 1 2.62 3 1
3 3 4 1.78 1 1.78 2 1
3 4 1 7.97 1 7.97 3 3
3 4 2 5.55 1 5.04 1 2
3 4 3 5.83 1 5.50 3 2
3 4 4 4.66 1 4.66 1 2
4 1 1 0.37 2 0.37 3 3
4 1 2 -2.05 2 -2.55 3 3
4 1 3 -1.77 2 -2.10 3 3

4 1 4 -2.94 2 -2.94 2 2

4 2 1 2.60 2 2.60 3 3
4 2 2 0.18 2 -0.32 3 2
4 2 3 0.47 2 0.14 3 2

continued on next page



6.2. Average reward models 60

continued from previous page

Value iteration Policy iteration Gittins index

Project Relative Av. reward Relative Av. reward β = 0.999
1 2 3 value policy value policy policy

4 2 4 -0.71 2 -0.71 2 2

4 3 1 2.72 2 2.72 3 3
4 3 2 0.3 2 -0.2 3 2
4 3 3 0.59 2 0.25 3 3

4 3 4 -0.59 2 -0.59 2 2

4 4 1 5.60 2 5.60 3 3
4 4 2 3.18 2 2.67 3 2
4 4 3 3.46 2 3.13 3 2

4 4 4 2.29 2 2.29 2 2

Table 6.4: Gittins indices with discount factor β = 0.999. Column A: Gittins indices
(augmented problem), Column 0: Indices with M = 0, Column R: Immediate reward
State B 1 2 3 4

Project O A 0 R A 0 R A 0 R A 0 R

1 7.00 3.57 7 6.00 3.57 6 4.77 3.57 3 3.57 3.57 1
2 3.86 3.86 3 4.36 3.86 4 4.03 3.86 2 5.00 4.86 5
3 7.00 1.77 7 3.95 1.78 3 4.29 1.78 4 1.77 1.77 1



Chapter 7

Conclusions and further work

The objective of this thesis was ful�lled to an extent that was quite satisfactory.
The author now understands the construction of the Gittins index way better that
he could have understood that without writing the thesis, and hopes that this thesis
will make the topic more understandable by a reader to whom the topic is previously
unknown.

However, in the beginning of the writing work it was assessed that it would be great
if this thesis could go a little beyond the work published on this topic, or to be easily
found. For example, this could include generalisation of the schedulable queueing
processes beyond the M/G/1-queue. It would also have been nice to add an exper-
iment on queueing with the Gittins index. The main reason, why these questions
were not answered in this thesis, is the lack of time and the wish to understand the
main theory behind the Gittins index well enough.

Further work on this topic naturally should continue the un�nished work. In prac-
tise this means further experimenting and scheduling of N -server queueing systems,
di�erent arrival processes and di�erent objective functions other that EWFT. The
work should also provide guidelines, how the indices could be evaluated in queueing
process in practise.

61



Appendix A

Queueing systems

In this section the most common queueing arrival and service processes are introduced
with some queueing disciplines. In the �rst section the standard notation [9] of
queueing systems [1] is introduced and it is followed by description of di�erent arrival
and service processes. In the last section some essential queueing disciplines are
introduced.

A.1 The standard notation of a queueing system

The standard way to describe a queueing system was introduced by David. G.
Kendall in 1951 [9] and has following form

A/S/m/c/p,

where each letter describes a certain part of the queueing system.

A Arrival process (e.g. M, Markovian) de�nes the distribution which the arrivals
obey.

S Service process (e.g. D, deterministic) de�nes the distribution that describes
the duration of service in a server.

m Number of servers (1, 2, . . . ,∞) in the system

c System slot count

p Size of the customer population

The quantity c stands for all the slots in the system, both servers and queueing slots.
If there are m servers and c slots in the system, then there are at most c−m waiting
slots in the system. If c or p is undeclared, they are assumed to be in�nite.

62



A.4. M/G/1-queue 63

A.2 Arrival and service processes

The processes of customers arriving and being processed in the system are charac-
terised through their arrival and service rates λ and µ. In addition the character of
the arrival and service processes is usually described with a single letter, that stands
for a certain type of probabilistic distribution, which in most cases is one of the
following three kinds.

M Markovian, memoryless, Poisson distributed
If a process follows Poisson distribution, the occurrences are fully independent
of each other, i.e. remaining time to next occurrence is not dependent on the
elapsed time.

G general distribution
If the distribution type is general, there are no restrictions on the type of the
distribution. The distribution is characterised through statistical measures like
mean and variance.

D deterministic distribution
A deterministic distribution is a constant, fully predictable distribution, e.g.
an arrival every second.

A.3 M/M/1-queue

One of the the simplest queueing system is a one-server system with Markovian
arrival and service processes. Because both processes are Markovian, it turns out
that the number of customers N(t) in the system at time t obeys the geometric
distribution. Furthermore it is possible to determine many quantities like average
customer time in the system, average number of customers in queue and probability
of n customers in the system with simple formulae, needed is only the arrival and
service rates λ and µ [1, p. 265].

A.4 M/G/1-queue

Another very common queueing system is a variation of the previous one, the M/G/1
queue. Again, there is only one server and the arrival process is Markovian, but the
type of the service process is not restricted. Therefore the number of customers in the
system does no longer follow the geometric distribution in general. However, there
exists a couple of pretty results also for M/G/1-queue, like Pollaczek-Khinchin for-
mula [1]. The common feature of the results is that most of them include dependence
upon the variance of the service time [1, p. 265].



A.6. Little's Theorem 64

A.5 Queueing disciplines

In this section some fundamental queueing disciplines of scheduling policies are listed,
as in Adam Wierman's recent article [20].

FCFS FCFS is also known as FIFO, which stands for First Come First Served and
First In First Out respectively. Arriving jobs are served in the order they
arrive.

PS Processor sharing (PS) discipline shares the processor time equally to all jobs
in the queue, giving the same service rate to each job.

FB Foreground-Background preemptively serves those jobs that have received the
least amount of service so far.

LCFS Last Come First Served, or Last In First Out (LIFO) is a discipline that serves
non-preemptively the job that arrived most recently.

SRPT Shortest Remaining Processing Time preemptively serves the job with the
shortest remaining size.

A.6 Little's Theorem

Sometimes the arrival and service processes are well known and the expected service
times can be easily measured, but the expected number of customers in the queueing
system remains unknown, or the other way round. Fortunately, independent from
the arrival and service processes, there exists a simple and important result known
as Little's Theorem [1, 10]. First some quantities are described.

Suppose that the sample history of the system is observed from time t = 0 to the
inde�nite future and the values of various quantities are recorded as the time goes
by, particularly de�ne

N(t) Number of customers in the system at time t
α(t) Number of customers who arrived in the interval [0, t]

Ti Time spent in the system by the ith arriving customer.

The intuitive notion of the �typical� number of customers in the system observed up
to time t is

Nt =
1
t

∫ t

0
N(τ)dτ,

which is further called time average of N(τ) up to time t. Naturally, Nt changes
with the time t, but in many systems of interest, Nt tends to a steady-state N as t
increases, that is,

N = lim
t→∞Nt.

This quantity is called steady-state time average of N(τ). It is also natural to view

λt =
α(t)

t



A.6. Little's Theorem 65

as the time average arrival rate over the interval [0, t]. The steady-state arrival rate
is again received as the limit of λt

λ = lim
t→∞λt.

Similarly, the time average of the customer delay up to time t is de�ned as

Tt =
∑α(t)

i=0 Ti

α(t)
,

that is, the average time spent in the system per customer up to time t. Again the
steady-state version is de�ned as

T = lim
t→∞Tt.

If the limit values N , λ and T exist, it turns out that the quantities are related by
a simple formula.

Little's Theorem. The quantities N , λ and T are related to each other through
equation

N = λT. (A.1)

It is possible to determine any quantity when the other are known.

The original proof written by the author of the theorem is available in a journal
article [10].



Appendix B

Mathematica source

B.1 initialise.nb

This �le was used to initialise the experiment data with help of the �le helper.nb.

First cell runs all cells of helper.nb.

(* Run every cell in helper.nb *)

Clear["Global`*"]

helper = Notebooks["helper.nb"];

If[Length[helper] == 0,

Print["Please open the notebook helper.nb"];];

helper = helper[[1]];

SelectionMove[helper, All, Notebook];

SelectionEvaluate[helper];

Initialise the experiment data.

(* Initialise the experiment data. *)

(* number of states and projects, and the discount factor *)

states = 4;

projects = 3;

beta = 0.9;

n = states^projects;

(* state combinations *)

projectstates = Tuples[Range[states], projects];

(* Transition probabilies *)

p = {{{0.0, 0.0 , 0.0, 1.0}, {0.0, 0.4, 0.5, 0.1},

{0.7, 0.1, 0.2, 0.0}, {0.1, 0.1, 0.5, 0.3}},

{{0.75, 0.15, 0.0, 0.1}, {0.35, 0.1, 0.35, 0.2},

{0.0, 0.1, 0.25, 0.65}, {0.05, 0.15, 0.15, 0.65}},

{{0.05, 0.0, 0.0, 0.95}, {0.2, 0.2, 0.6, 0.0},

66



B.2. helper.nb 67

{0.1, 0.3, 0.3, 0.3}, {0.0, 0.0, 0.1, 0.9}}};

(* Respective rewards *)

r = {{7, 6, 3, 1}, {3, 4, 2, 5}, {7, 3, 4, 1}};

(* A random policy *)

{randomPTr, randomRewards, randomPolicy} =

randomPolicyGenerator[p, r, projectstates, n];

B.2 helper.nb

This �le includes a set of functions used by other �les.

Function pTrAfterPolicy determines the transition probability matrix for
entire set of state combinations according to a certain policy.

pTrAfterPolicy[policy_, projectstates_, p_] :=

Module[{pTr, n, project},

n = Length[policy];

pTr = Table[0., {n}, {n}];

Do[

project = policy[[i]];

Do[

If[Max[

Abs[Delete[projectstates[[i]] - projectstates[[j]],

project]]] == 0,

pTr[[i, j]] =

p[[project, projectstates[[i, project]],

projectstates[[j, project]]]];

];,

{j, n}];,

{i, n}];

pTr];

Function rewardsAfterPolicy determines the immediate rewards accord-
ing to the given policy.

rewardsAfterPolicy[policy_, projectstates_, r_] :=

Module[{rewards, n, project},

n = Length[policy];

rewards = Table[0., {n}];

Do[

project = policy[[i]];

rewards[[i]] = r[[project, projectstates[[i, project]]]];,

{i, n}];

rewards];



B.2. helper.nb 68

Function greedyPolicy generates the greedy policy.

greedyPolicy[p_, r_, n_, projectstates_] :=

Module[{gPTr, gRewards, gPolicy},

gPTr = Table[0., {i, n}, {j, n}];

gRewards = Table[0., {i, n}];

gPolicy = Table[0, {i, n}];

projects = Length[p];

states = Length[p[[1]]];

Do[

rewards = Table[r[[j, projectstates[[i, j]]]], {j, projects}];

bestproject = Position[rewards, Max[rewards], 1, 1][[1, 1]];

gPolicy[[i]] = bestproject;

Do[

If[Max[

Abs[Delete[projectstates[[i]] - projectstates[[j]],

bestproject]]] == 0,

gPTr[[i, j]] =

p[[bestproject, projectstates[[i, bestproject]],

projectstates[[j, bestproject]]]];

];,

{j, n}];

gRewards[[i]] =

r[[bestproject, projectstates[[i, bestproject]]]];,

{i, n}];

{gPTr, gRewards, gPolicy}];

Function e returns a vector, where all the indices listed in the list have
equal nonzero values while all other components are zero. The length of
the vector is n and the norm is 1.

e[list_, n_] := Table[If[MemberQ[list, i], 1.0/Length[list], 0], {i, n}];

Function reduceStates searches the transient and absorbing states of given
policy and transition probabilities. There may be more than one group
of absorbing states.

reduceStates[policy_, projectstates_, p_] :=

Module[{n, pPi, pTr, project, absorbingstates, transientstates},

(* The number of state combinations is the length of the policy \

vector *)

n = Length[policy];

(* pTrAfterPolicy returns the probability transition matrix \

according to the given policy *)

pTr = pTrAfterPolicy[policy, projectstates, p];



B.2. helper.nb 69

(* pPi is the probability transition matrix of infinite number of \

transitions *)

pPi = Chop[FixedPoint[#.pTr &, pTr, 50000]];

(* The first guess for the states that are absorbing is to search \

the possible final states for every initial state. \

Union removes the duplicates. *)

absorbingstates =

Union[Map[

projectstates[[

Flatten[Position[e[{#}, n].pPi, x_ /; x != 0]]]] &,

Range[n]]];

(* The final state groups, which are unions of other candidates,

are discarded. Only the smallest groups are accepted *)

absorbingstates =

Select[absorbingstates,

And @@ Table[(Intersection[#, absorbingstates[[i]]] == # ||

Intersection[#, absorbingstates[[i]]] == {}), {i,

Length[absorbingstates]}] &];

(* The group of transient states is supposed to be the complement \

of absorbing states *)

transientstates =

Complement[projectstates, Flatten[absorbingstates, 1]];

{absorbingstates, transientstates}];

Function verify tests if the absorbing and transient state groups really are
what expected.

verify[absorbingstates_, transientstates_, policy_, projectstates_, p_] :=

Module[{temp, pTr, verification},

(* The test must be run for each absorbing state group *)

verification = Table[False, {i, Length[absorbingstates]}];

(* The transition probability matrix for one step and infinite \

number of steps. *)

pTr = pTrAfterPolicy[policy, projectstates, p];

pPi = Table[0., {n}, {n}];

pPi = FixedPoint[#.pTr &, pTr, 10000];

Do[

(* The temp vector represesents the initial state,

where we start already from absorbing states *)

temp = e[

Flatten[

Map[Position[projectstates, #] &, absorbingstates[[i]]]], n].pTr;

(* After one transition according to the policy the state of the \



B.2. helper.nb 70

project must stay in the absorbing group. *)

verification[[i]] = (Flatten[Position[temp, x_ /; x != 0]] ==

Flatten[Map[Position[projectstates, #] &, absorbingstates[[i]]]]);,

{i, Length[absorbingstates]}];

(* First boolean value tells if the absorbing states really are \

absorbing. Second boolean value tells if the redundant states \

really are redundant according to the transition probability \

matrix in case of infinite number of transitions. *)

{And @@ verification,

projectstates[[Flatten[Position[Map[Norm[#, 1] &, Transpose[pPi]],

x_ /; x == 0.]]]] == redundantstates}];

This function initialises random rewards and transition probabilities.

initialize[states_, projects_, {RewMax_, RewMin_}] :=

Module[{n, m, p, r, projectstates}, n = states^projects;

projectstates = Tuples[Range[states], projects]; m = projects^n;

r = Table[

RandomReal[{RewMin, RewMax}, WorkingPrecision -> 1], {i,

projects}, {j, states}];

p = Table[0., {i, projects}, {j, states}, {k, states}];

p = Table[

Random[ExponentialDistribution[1]], {i, projects}, {j,

states}, {k, states}];

p = Map[#1/Norm[#1, 1]&, p, {2}]; {p, r, n, projectstates}];

Function randomPolicy creates a random policy.

randomPolicyGenerator[p_, r_, projectstates_, n_] :=

Module[{pTr, rewards, policy}, pTr = Table[0., {n}, {n}];

rewards = Table[0., {n}]; policy = Table[0, {n}];

projects = Length[p];

Do[project = RandomInteger[{1, projects}]; policy[[i]] = project;

Do[If[Norm[Delete[projectstates[[i]] - projectstates[[j]],

project], 1] == 0,

pTr[[i, j]] =

p[[project, projectstates[[i, project]],

projectstates[[j, project]]]];];, {j, n}];

rewards[[i]] = r[[project, projectstates[[i, project]]]];, {i, n}];

{pTr, rewards, policy}];

Function solveHoward evaluates a policy without discounting.

solveHoward[pTr_, rewards_, n_] :=

Module[{u, w, vars, lhs, rhs, pi, result, value, aValue, h, g},

(* Clear and initialise unknown variables for Solve. *)



B.3. gittinscontinuous.nb 71

h = Table[0, {n}];

g = Table[0, {n}];

Do[

h[[i]] = u[i];

g[[i]] = w[i];,

{i, n}];

(* Variables to be solved (value function h and average reward g) *)

vars = Flatten[{h, g}];

(* Left hand side of the equation is union of equations from the \

Howard equation and additional equations. *)

(* First equation *)

lhs = (pTr - IdentityMatrix[n]).g;

(* Second equation *)

lhs = Flatten[{lhs, rewards - g + (pTr - IdentityMatrix[n]).h}];

(* Constraint equation *)

pi = Chop[FixedPoint[#.pTr &, pTr, 50000]];

lhs = Flatten[{lhs, pi.h}];

(* Right hand side is zero. *)

rhs = Table[0, {Length[lhs]}];

result = Solve[lhs == rhs, vars];

value = Flatten[h /. result];

aValue = Flatten[g /. result];

{aValue, value}];

B.3 gittinscontinuous.nb

Evaluating Gittins indices and value functions.

phi = Table[0., {projects}, {states}];

giOrder = Table[0, {projects}, {states}];

(* Following loop solves first the value function and index from the \

project in ascending order *)

Do[

(* Clear old values *)

Clear[temp1, temp2, temp3, temp4, temp5, temp6, eqn, res, w];

temp1 = Table[0., {projects}, {states}];

temp5 = temp4 = temp3 = temp2 = temp1;

Do[

(* temp1 is an unknown vector for Solve *)

temp1[[i]] = Table[w[j], {j, states}];, {i, projects}];

(* The dynamic programming equation without max as an expression *)



B.3. gittinscontinuous.nb 72

eqn = Table[(r[[i]] + beta*p[[i]].temp1[[i]] - temp1[[i]])[[j]],

{i, projects}, {j, states}];

(* Result vector *)

res = Table[0., {projects}];

Do[

Do[

(* Add the varibale to the equation *)

eqn[[i, giOrder[[i, j]]]] = phi[[i, giOrder[[i, j]]]] -

w[giOrder[[i, j]]];,

{j, currentIndex - 1}];

(* Solve the equation without max *)

res[[i]] = Solve[eqn[[i]] == 0, temp1[[i]]];,

{i, projects}];

(* temp2 is the results in substitution form *)

temp2 = Flatten[res, 1];

(* temp3 is the plain results without substitution *)

Do[

temp3[[i]] = temp1[[i]] /. temp2[[i]];,

{i, projects}];

(* temp4 is the results operated with Max[.,M] *)

temp4 = Map[PiecewiseExpand, Map[Max[M, #] &, temp3, {2}], {2}] //

Simplify;

(* temp5 pics out the biggest delimiter of the piecewise functions \

(Gittins indices) *)

temp5 = Table[

temp4[[i, j, 1, Length[temp4[[i, j, 1]]], 2,

Length[temp4[[i, j, 1, Length[temp4[[i, j, 1]]], 2]]]]],

{i, projects}, {j, states}];

temp6 = Map[Ordering, temp5];

giOrder = Take[#, currentIndex] & /@ temp6;

(* Save the solved value function to phi *)

Do[

phi[[i, Last[giOrder[[i]]]]] = temp4[[i, Last[giOrder[[i]]]]];,

{i, projects}];,

{currentIndex, states}];

giIndices = temp5*(1 - beta);

(* Last lines produce a policy vector that indicates the project with \

the best Gittins index *)

GIPolicy = Table[0, {n}];

Do[stateGiIndices =

Table[giIndices[[j, projectstates[[i, j]]]], {j, projects}];

GIPolicy[[i]] =

Position[stateGiIndices, Max[stateGiIndices], 1, 1][[1, 1]];,

{i, n}];

(* Further results *)

pTr = pTrAfterPolicy[GIPolicy, projectstates, p];

rewards = rewardsAfterPolicy[GIPolicy, projectstates, r];



B.4. policyiteration.nb 73

{GIabsorbingstates, GItransientstates} =

reduceStates[GIPolicy, projectstates, p];

{GIAValue, GIValue} = solveHoward[pTr, rewards, n];

The results are drawn.

Clear[plots];

Do[plotmax = (giIndices[[i, giOrder[[i, -1]]]] 1.1)/(1 - beta);

plotmin = giIndices[[i, giOrder[[i, 1]]]]/(1 - beta);

margin = (plotmax - plotmin) 0.1; phi2 = Append[phi[[i]], M];

plots[i] =

Plot[phi2, {M, plotmin - margin, plotmax}, AspectRatio -> 1,

PlotRange -> {{plotmin - margin, plotmax}, {plotmin - margin,

plotmax}}, AxesOrigin -> {plotmin, plotmin}, Exclusions -> None,

PlotStyle -> {{Thickness[0.004]}, {Dashing[{0.01, 0.008}],

Thickness[0.004]}, {Dashing[{0.015, 0.008}],

Thickness[0.004]}, {Dashing[{0.02, 0.008}], Thickness[0.004]},

Black}],

{i, projects}]

B.4 policyiteration.nb

Discounted policy iteration

(* Initialisation of runtime variables *)

alternatePolicies = Table[0., {projects}, {n}];

alternateRewards = Table[0., {projects}];

iPTr = randomPTr;

iRewards = randomRewards;

iPolicy = Table[0, {n}];

lastPTr = iPTr*0.;

lastRewards = iRewards*0.0;

i = 1;

(* Iterate until the policy (and corresponding transition \

probabilities) remain unchanged *)

While[iPTr != lastPTr,

(* Progress indicator *)

Print["Iteration ", i];

lastPTr = iPTr;

lastRewards = iRewards;

(* Value update *)

V = Inverse[IdentityMatrix[n] - beta*lastPTr].lastRewards;

(* Create alternative policies for comparation *)

Do[



B.4. policyiteration.nb 74

Do[

alternatePolicies[[project]] *= 0.0;

(* Check only transitions to states that differ only in one \

project. *)

Do[

If[Norm[

Delete[projectstates[[state]] - projectstates[[j]], project],

1] == 0,

alternatePolicies[[project, j]] =

p[[project, projectstates[[state, project]],

projectstates[[j, project]]]];

];,

{j, n}];

alternateRewards[[project]] =

r[[project, projectstates[[state, project]]]];,

{project, projects}];

rewards =

Flatten[Table[

alternateRewards[[i]] + beta*alternatePolicies[[i]].V, {i,

projects}]];

(* Choose the best available decision for every state. *)

bestProject = Position[rewards, Max[rewards]][[1, 1]];

(* Update the policy. *)

iPolicy[[state]] = bestProject;

iPTr[[state]] = alternatePolicies[[bestProject]];

iRewards[[state]] = alternateRewards[[bestProject]];,

{state, n}];

i++;

];

(* Save the results to variables. *)

DPIPolicy = iPolicy;

DPIValue = V;

DPIPTr = iPTr;

DPIrewards = iRewards;

{DPIabsorbingstates, DPItransientstates} =

reduceStates[DPIPolicy, projectstates, p];

Average reward policy iteration

(* Initialisation of runtime variables *)

alternatePolicies = Table[0., {projects}, {n}];

alternateRewards = Table[0., {projects}];

(* Generate random initial policy. *)

{randomPTr, randomRewards,

randomPolicy} = randomPolicyGenerator[p, r, projectstates, n];

iPTr = randomPTr;

iRewards = randomRewards;

iPolicy = randomPolicy;



B.4. policyiteration.nb 75

lastPTr = iPTr*0.0;

lastRewards = iRewards*0.0;

i = 1;

(* Iterate until the policy (and corresponding transition \

probabilities) remain unchanged *)

While[iPTr != lastPTr,

Print["Iteration ", i];

lastPTr = iPTr;

lastRewards = iRewards;

(* Evaluate policy. *)

{AV, V} = solveHoward[iPTr, iRewards, n];

Do[

(* Create alternative policies for comparation. *)

Do[

alternatePolicies[[project]] *= 0.0;

Do[

(* Accept only transition to states that differ only in one \

project. *)

If[Norm[Delete[projectstates[[state]] - projectstates[[j]],

project], 1] == 0,

alternatePolicies[[project, j]] =

p[[project, projectstates[[state, project]],

projectstates[[j, project]]]];

];,

{j, n}];

alternateRewards[[project]] =

r[[project, projectstates[[state, project]]]];,

{project, projects}];

(* Evalueate alternative rewards. *)

rewards =

Flatten[Table[alternatePolicies[[i]].AV, {i, projects}]];

bestProject = Position[rewards, Max[rewards]][[1, 1]];

(* Choose the best available rewards and update the policy. *)

(*

Condition (a) *)

If[rewards[[bestProject]] > rewards[[iPolicy[[state]]]],

iPolicy[[state]] = bestProject;

iPTr[[state]] = alternatePolicies[[bestProject]];

iRewards[[state]] = alternateRewards[[bestProject]];,

(* Condition (b) *)



B.5. valueiteration.nb 76

rewards =

Flatten[Table[

alternateRewards[[i]] + alternatePolicies[[i]].V, {i, projects}]];

bestProject = Position[rewards, Max[rewards]][[1, 1]];

If[rewards[[bestProject]] > rewards[[iPolicy[[state]]]],

iPolicy[[state]] = bestProject;

iPTr[[state]] = alternatePolicies[[bestProject]];

iRewards[[state]] = alternateRewards[[bestProject]];

];

];,

{state, n}];

i++;

];

(* Save the results to variables. *)

APIPTr = iPTr;

APIrewards = iRewards;

APIPolicy = iPolicy;

APIValue = V;

APIAValue = AV;

{APIabsorbingstates, APItransientstates} =

reduceStates[APIPolicy, projectstates, p];

B.5 valueiteration.nb

Discounted value iteration

(* Initial policy is the greedy policy. *)

{gPTr, gRewards, gPolicy} =

greedyPolicy[p, r, n, projectstates];

(* arrays for policies to be compared *)

alternatePolicies = Table[0., {projects}, {n}];

alternateRewards = Table[0., {projects}];

(* arrays to save the iterated policy *)

iPTr = gPTr;

iRewards = iV = gRewards;

oV = 0.*iV;

iPolicy = gPolicy;

(* Iterate until the discounted value does not change any more. *)

i = 1;

While[iV != oV,

(* Print iteration count always when i is power of 2. *)

If[IntegerQ[Log[2, i]],

Print["Iteration ", i]];



B.5. valueiteration.nb 77

(* Create alternative policies. *)

Do[

Do[

alternatePolicies[[project]] *= 0.0;

(* Accept only transition to states that differ only in one \

project. *)

Do[

If[Max[

Abs[Delete[projectstates[[state]] - projectstates[[j]],

project]]] == 0,

alternatePolicies[[project, j]] =

p[[project, projectstates[[state, project]],

projectstates[[j, project]]]];];,

{j, n}];

(* alternate rewards *)

alternateRewards[[project]] =

r[[project, projectstates[[state, project]]]];,

{project, projects}];

(* possible new values for the value function *)

newValues =

Table[alternateRewards[[j]] + beta*

alternatePolicies[[j]].iV, {j, projects}];

(* the best values are chosen *)

bestproject = Position[newValues, Max[newValues]][[1, 1]];

(* the policy is updated *)

iPolicy[[state]] = bestproject;

iPTr[[state]] = alternatePolicies[[bestproject]];

iRewards[[state]] = alternateRewards[[bestproject]];,

{state, n}];

oV = iV;

iV = iRewards + beta*iPTr.iV;

i++;

];

(* Save the results to variables. *)

Print["Iteration ", i];

DVIPolicy = iPolicy;

DVIrewards = iRewards;

DVIValue = iV;

DVIPTr = iPTr;

DVIrewards = iRewards;

{DVIabsorbingstates, DVItransientstates} =

reduceStates[DVIPolicy, projectstates, p];



B.5. valueiteration.nb 78

Average reward value iteration

(* Initial policy is the greedy policy. *)

{gPTr, gRewards, gPolicy} =

greedyPolicy[p, r, n, projectstates];

(* arrays for policies to be compared *)

alternatePolicies = Table[0., {projects}, {n}];

alternateRewards = Table[0., {projects}];

(* arrays to save the iterated policy *)

iPTr = gPTr;

AV = iRewards = iV = gRewards;

oAV = oV = 0.*iV;

i = 1;

iPolicy = gPolicy;

(* do until the values do not change *)

While[Max[Abs[Chop[AV - oAV, 10^(-7)]]] != 0.0,

(* Print iteration count always when i is power of 2. *)

If[IntegerQ[Log[2, i]],

Print["Iteration ", i]];

(* for every state combination *)

Do[

(* for every project *)

Do[

alternatePolicies[[project]] *= 0.0;

(* again for every state,

search in which states the transition is possible. *)

Do[

If[Max[

Abs[Delete[projectstates[[state]] - projectstates[[j]],

project]]] == 0,

alternatePolicies[[project, j]] =

p[[project, projectstates[[state, project]],

projectstates[[j, project]]]];];,

{j, n}];

(* alternate rewards *)

alternateRewards[[project]] =

r[[project, projectstates[[state, project]]]];,

{project, projects}];

(* possible new values for the value function *)

rewards =

Table[alternateRewards[[j]] + alternatePolicies[[j]].iV, {j,

projects}];

(* the best values are chosen *)



B.5. valueiteration.nb 79

bestproject = Position[rewards, Max[rewards]][[1, 1]];

(* the policy is updated *)

iPolicy[[state]] = bestproject;

iPTr[[state]] = alternatePolicies[[bestproject]];

iRewards[[state]] = alternateRewards[[bestproject]];,

{state, n}];

oAV = AV;

oV = iV;

i++;

iV = iRewards + iPTr.iV;

AV = iV - oV;

];

(* Save the results to variables. *)

Print["Iteration ", i];

AVIPTr = iPTr;

AVIrewards = iRewards;

AVIPolicy = iPolicy;

AVIAValue = AV;

AVIValue = iV - i*AV;

{AVIabsorbingstates, AVItransientstates} =

reduceStates[AVIPolicy, projectstates, p];



Bibliography

[1] Dimitri Bertsekas and Robert Gallager. Data networks (2nd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1992.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control 2nd Edition,
volume 2. Athena Scienti�c, 2001.

[3] David Blackwell. Discounted dynamic programming. Annals of Mathematical
Statistics, 36(1):226�235, 1965.

[4] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-
Verlag New York, Inc., New York, NY, USA, 1996.

[5] J.C. Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society. Series B (Methodological), 41(2):148�177, 1979.

[6] J.C. Gittins. Multi-armed Bandit Allocation Indices. Wiley-Interscience series
in Systems and Optimization. John Wiley & sons, New York, 1989.

[7] K. D. Glazebrook. Stochastic scheduling with order constraints. International
journal of system sciences, 7(6):657�666, 1976.

[8] Olivier Gottfried. Kostenminimale prioritäten in wartesystemen vom typ m/g/1.
Elektronische Rechenanlagen, 14(6):262�271, 1972.

[9] David G. Kendall. Some problems in the theory of queues. Journal of the Royal
Statistical Society. Series B (Methodological), 13(2):151�185, 1951.

[10] John D. C. Little. A proof for the queuing formula: L= λw. Operations Research,
9(3):383�387, may 1961.

[11] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, New York, NY, USA, 1994.

[12] Sheldon M. Ross. Applied Probability Models with Optimization Applications.
Dover Publications inc. New York, 1992.

[13] Satinder Singh and David Cohn. How to dynamically merge markov decision
processes. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors,
Advances in Neural Information Processing Systems, volume 10. The MIT Press,
1998.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press (Bradford Book), 1998.

80



BIBLIOGRAPHY 81

[15] Henk C. Tijms. Stochastic Models: An Algorithmic Approach. John Wiley &
Sons, 1994.

[16] J. Virtamo and S. Aalto. Calculation of time-dependent blocking probabili-
ties. In B. Goldstein, A. Koucheryavy, and M. Shneps-Shneppe, editors, the
Proceedings of the ITC Sponsored St. Petersburg Regional International Tele-
tra�c Seminar Teletra�c Theory as a Base for QoS: Monitoring, Evaluation,
Decisions, pages 365�375, St. Petersburg, Jun. 1998.

[17] Richard Weber. On the gittins index for multiarmed bandits. The Annals of
Applied Probability, 2(4):1024�1033, 1992.

[18] Peter Whittle. Multi-armed bandits and the gittins index. Journal of the Royal
Statistical Society, 42(2):143�149, 1980.

[19] Peter Whittle. Optimal Control: Basics and Beyond. John Wiley & Sons, 1996.

[20] Adam Wierman. Fairness and classi�cations. SIGMETRICS Perform. Eval.
Rev., 34(4):4�12, 2007.


